Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems

In this article, using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions for the system of equations $$ dot{u}_i(t)=u_i(t)Big[r_i(t)-a_{ii}(t)u_i(t) -sum_{j=1, jeq i}^na_{ij}(t)u_jig(t-au_j(t,...

Full description

Bibliographic Details
Main Authors: Yongkun Li, Chao Wang
Format: Article
Language:English
Published: Texas State University 2012-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/91/abstr.html
id doaj-b90b1f71bf904613bd39578a385ab762
record_format Article
spelling doaj-b90b1f71bf904613bd39578a385ab7622020-11-25T00:56:24ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912012-06-01201291,110Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systemsYongkun LiChao WangIn this article, using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions for the system of equations $$ dot{u}_i(t)=u_i(t)Big[r_i(t)-a_{ii}(t)u_i(t) -sum_{j=1, jeq i}^na_{ij}(t)u_jig(t-au_j(t,u_1(t), dots,u_n(t))ig)Big], $$ where $r_i,a_{ii}>0$, $a_{ij}geq0(jeq i$, $i,j=1,2,dots,n)$ are almost periodic functions, $au_iin C(mathbb{R}^{n+1},mathbb{R})$, and $au_i(i=1,2,dots,n)$ are almost periodic in $t$ uniformly for $(u_1,dots,u_n)^Tinmathbb{R}^n$. An example and its simulation figure illustrate our results. http://ejde.math.txstate.edu/Volumes/2012/91/abstr.htmlLotka-Volterra competition systemalmost periodic solutionscoincidence degreestate dependent delays
collection DOAJ
language English
format Article
sources DOAJ
author Yongkun Li
Chao Wang
spellingShingle Yongkun Li
Chao Wang
Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
Electronic Journal of Differential Equations
Lotka-Volterra competition system
almost periodic solutions
coincidence degree
state dependent delays
author_facet Yongkun Li
Chao Wang
author_sort Yongkun Li
title Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
title_short Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
title_full Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
title_fullStr Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
title_full_unstemmed Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems
title_sort positive almost periodic solutions for state-dependent delay lotka-volterra competition systems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2012-06-01
description In this article, using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions for the system of equations $$ dot{u}_i(t)=u_i(t)Big[r_i(t)-a_{ii}(t)u_i(t) -sum_{j=1, jeq i}^na_{ij}(t)u_jig(t-au_j(t,u_1(t), dots,u_n(t))ig)Big], $$ where $r_i,a_{ii}>0$, $a_{ij}geq0(jeq i$, $i,j=1,2,dots,n)$ are almost periodic functions, $au_iin C(mathbb{R}^{n+1},mathbb{R})$, and $au_i(i=1,2,dots,n)$ are almost periodic in $t$ uniformly for $(u_1,dots,u_n)^Tinmathbb{R}^n$. An example and its simulation figure illustrate our results.
topic Lotka-Volterra competition system
almost periodic solutions
coincidence degree
state dependent delays
url http://ejde.math.txstate.edu/Volumes/2012/91/abstr.html
work_keys_str_mv AT yongkunli positivealmostperiodicsolutionsforstatedependentdelaylotkavolterracompetitionsystems
AT chaowang positivealmostperiodicsolutionsforstatedependentdelaylotkavolterracompetitionsystems
_version_ 1725227444952104960