Machine-Learning-Based Side-Channel Evaluation of Elliptic-Curve Cryptographic FPGA Processor

Security of embedded systems is the need of the hour. A mathematically secure algorithm runs on a cryptographic chip on these systems, but secret private data can be at risk due to side-channel leakage information. This research focuses on retrieving secret-key information, by performing machine-lea...

Full description

Bibliographic Details
Main Authors: Naila Mukhtar, Mohamad Ali Mehrabi, Yinan Kong, Ashiq Anjum
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/9/1/64
Description
Summary:Security of embedded systems is the need of the hour. A mathematically secure algorithm runs on a cryptographic chip on these systems, but secret private data can be at risk due to side-channel leakage information. This research focuses on retrieving secret-key information, by performing machine-learning-based analysis on leaked power-consumption signals, from Field Programmable Gate Array (FPGA) implementation of the elliptic-curve algorithm captured from a Kintex-7 FPGA chip while the elliptic-curve cryptography (ECC) algorithm is running on it. This paper formalizes the methodology for preparing an input dataset for further analysis using machine-learning-based techniques to classify the secret-key bits. Research results reveal how pre-processing filters improve the classification accuracy in certain cases, and show how various signal properties can provide accurate secret classification with a smaller feature dataset. The results further show the parameter tuning and the amount of time required for building the machine-learning models.
ISSN:2076-3417