Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions.
Plasmid-based gene expression is a fundamental tool in the field of biotechnology. However, overexpression of genes of interest with multi-copy plasmids often causes detrimental effects on host cells. To overcome this problem, chromosomal integration of target genes has been used for decades; howeve...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0166890 |
id |
doaj-b8f9c841037144eb8ef95f3fac39bc5c |
---|---|
record_format |
Article |
spelling |
doaj-b8f9c841037144eb8ef95f3fac39bc5c2021-03-03T20:32:53ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-011112e016689010.1371/journal.pone.0166890Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions.Soo-Jin YeomDae-Hee LeeYu Jung KimJeongmin LeeKil Koang KwonGui Hwan HanHaseong KimHak-Sung KimSeung-Goo LeePlasmid-based gene expression is a fundamental tool in the field of biotechnology. However, overexpression of genes of interest with multi-copy plasmids often causes detrimental effects on host cells. To overcome this problem, chromosomal integration of target genes has been used for decades; however, insufficient protein expression occurred with this method. In this study, we developed a novel cloning and expression system named the chromosomal vector (ChroV) system, that has features of stable and high expression of target genes on the F' plasmid in the Escherichia coli JM109(DE3) strain. We used an RMT cluster (KCTC 11994BP) containing a silent cat gene from a previous study to clone a gene into the F' plasmid. The ChroV system was applied to clone two model targets, GFPuv and carotenoids gene clusters (4 kb), and successfully used to prove the inducible tightly regulated protein expression in the F' plasmid. In addition, we verified that the expression of heterologous genes in ChroV system maintained stably in the absence of antibiotics for 1 week, indicating ChroV system is applicable to antibiotics-free production of valuable proteins. This protocol can be widely applied to recombinant protein expression for antibiotics-free, stable, and genome-based expression, providing a new platform for recombinant protein synthesis in E. coli. Overall, our approach can be widely used for the economical and industrial production of proteins in E. coli.https://doi.org/10.1371/journal.pone.0166890 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Soo-Jin Yeom Dae-Hee Lee Yu Jung Kim Jeongmin Lee Kil Koang Kwon Gui Hwan Han Haseong Kim Hak-Sung Kim Seung-Goo Lee |
spellingShingle |
Soo-Jin Yeom Dae-Hee Lee Yu Jung Kim Jeongmin Lee Kil Koang Kwon Gui Hwan Han Haseong Kim Hak-Sung Kim Seung-Goo Lee Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. PLoS ONE |
author_facet |
Soo-Jin Yeom Dae-Hee Lee Yu Jung Kim Jeongmin Lee Kil Koang Kwon Gui Hwan Han Haseong Kim Hak-Sung Kim Seung-Goo Lee |
author_sort |
Soo-Jin Yeom |
title |
Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. |
title_short |
Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. |
title_full |
Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. |
title_fullStr |
Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. |
title_full_unstemmed |
Long-Term Stable and Tightly Controlled Expression of Recombinant Proteins in Antibiotics-Free Conditions. |
title_sort |
long-term stable and tightly controlled expression of recombinant proteins in antibiotics-free conditions. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2016-01-01 |
description |
Plasmid-based gene expression is a fundamental tool in the field of biotechnology. However, overexpression of genes of interest with multi-copy plasmids often causes detrimental effects on host cells. To overcome this problem, chromosomal integration of target genes has been used for decades; however, insufficient protein expression occurred with this method. In this study, we developed a novel cloning and expression system named the chromosomal vector (ChroV) system, that has features of stable and high expression of target genes on the F' plasmid in the Escherichia coli JM109(DE3) strain. We used an RMT cluster (KCTC 11994BP) containing a silent cat gene from a previous study to clone a gene into the F' plasmid. The ChroV system was applied to clone two model targets, GFPuv and carotenoids gene clusters (4 kb), and successfully used to prove the inducible tightly regulated protein expression in the F' plasmid. In addition, we verified that the expression of heterologous genes in ChroV system maintained stably in the absence of antibiotics for 1 week, indicating ChroV system is applicable to antibiotics-free production of valuable proteins. This protocol can be widely applied to recombinant protein expression for antibiotics-free, stable, and genome-based expression, providing a new platform for recombinant protein synthesis in E. coli. Overall, our approach can be widely used for the economical and industrial production of proteins in E. coli. |
url |
https://doi.org/10.1371/journal.pone.0166890 |
work_keys_str_mv |
AT soojinyeom longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT daeheelee longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT yujungkim longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT jeongminlee longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT kilkoangkwon longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT guihwanhan longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT haseongkim longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT haksungkim longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions AT seunggoolee longtermstableandtightlycontrolledexpressionofrecombinantproteinsinantibioticsfreeconditions |
_version_ |
1714821925848481792 |