Effective Routing Technique: Augmenting Data Center Switch Fabric Performance
Today, data center networks (DCNs) are built using multi-tier architecture. These large-scale networks face many challenges, such as security, delay, low throughput, loops, link oversubscription, TCP Incast and Outcast, etc. In this paper, a TCAM (Ternary Content Addressable Memory) based routing te...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/8999498/ |
id |
doaj-b8ee9aa3c20d40f2812662fa546a2e7b |
---|---|
record_format |
Article |
spelling |
doaj-b8ee9aa3c20d40f2812662fa546a2e7b2021-03-30T02:28:57ZengIEEEIEEE Access2169-35362020-01-018373723738210.1109/ACCESS.2020.29739328999498Effective Routing Technique: Augmenting Data Center Switch Fabric PerformanceMuhammad Kashif Khattak0https://orcid.org/0000-0002-6095-4557Yazhe Tang1Hamza Fahim2https://orcid.org/0000-0001-6537-7691Eid Rehman3Muhammad Faran Majeed4https://orcid.org/0000-0001-9734-1191School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, ChinaSchool of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, ChinaSchool of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, ChinaDepartment of Software Engineering, Foundation University Islamabad (Rawalpindi Campus), Rawalpindi, PakistanDepartment of Computer Science, Shaheed Benazir Bhutto University, Sheringal, PakistanToday, data center networks (DCNs) are built using multi-tier architecture. These large-scale networks face many challenges, such as security, delay, low throughput, loops, link oversubscription, TCP Incast and Outcast, etc. In this paper, a TCAM (Ternary Content Addressable Memory) based routing technique is proposed, augmenting the routing capabilities of multi-tier architectures in large scale networks. The routing complexities in these architectures are rectified and improved by implementing an additional TCAM based routing table in Leaf/ToR switches for a specific number of compute nodes in particular Pods, and it is scalable to whole datacenter nodes. To test the model, we implemented two prototype models: one depicting our proposed TCAM based switch and the other is a typical Top-of-the-Rack (ToR) switch and compared the performance of the proposed model and if any overhead introduced in it. The preliminary results show that our TCAM based routing table technique is fast and it forwards the network packets at line-rate, does not introduce considerable latency, on-chip resources power consumptions is less than 3%, and helps to solve or mitigate the above critical problems that are present in the current large DC's three-tier architecture, especially in Top of the Rack and aggregation layers switches.https://ieeexplore.ieee.org/document/8999498/Data center networksTCAM tablestop of the rack switcheslink oversubscriptionTCP incast and outcastloops |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Muhammad Kashif Khattak Yazhe Tang Hamza Fahim Eid Rehman Muhammad Faran Majeed |
spellingShingle |
Muhammad Kashif Khattak Yazhe Tang Hamza Fahim Eid Rehman Muhammad Faran Majeed Effective Routing Technique: Augmenting Data Center Switch Fabric Performance IEEE Access Data center networks TCAM tables top of the rack switches link oversubscription TCP incast and outcast loops |
author_facet |
Muhammad Kashif Khattak Yazhe Tang Hamza Fahim Eid Rehman Muhammad Faran Majeed |
author_sort |
Muhammad Kashif Khattak |
title |
Effective Routing Technique: Augmenting Data Center Switch Fabric Performance |
title_short |
Effective Routing Technique: Augmenting Data Center Switch Fabric Performance |
title_full |
Effective Routing Technique: Augmenting Data Center Switch Fabric Performance |
title_fullStr |
Effective Routing Technique: Augmenting Data Center Switch Fabric Performance |
title_full_unstemmed |
Effective Routing Technique: Augmenting Data Center Switch Fabric Performance |
title_sort |
effective routing technique: augmenting data center switch fabric performance |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
Today, data center networks (DCNs) are built using multi-tier architecture. These large-scale networks face many challenges, such as security, delay, low throughput, loops, link oversubscription, TCP Incast and Outcast, etc. In this paper, a TCAM (Ternary Content Addressable Memory) based routing technique is proposed, augmenting the routing capabilities of multi-tier architectures in large scale networks. The routing complexities in these architectures are rectified and improved by implementing an additional TCAM based routing table in Leaf/ToR switches for a specific number of compute nodes in particular Pods, and it is scalable to whole datacenter nodes. To test the model, we implemented two prototype models: one depicting our proposed TCAM based switch and the other is a typical Top-of-the-Rack (ToR) switch and compared the performance of the proposed model and if any overhead introduced in it. The preliminary results show that our TCAM based routing table technique is fast and it forwards the network packets at line-rate, does not introduce considerable latency, on-chip resources power consumptions is less than 3%, and helps to solve or mitigate the above critical problems that are present in the current large DC's three-tier architecture, especially in Top of the Rack and aggregation layers switches. |
topic |
Data center networks TCAM tables top of the rack switches link oversubscription TCP incast and outcast loops |
url |
https://ieeexplore.ieee.org/document/8999498/ |
work_keys_str_mv |
AT muhammadkashifkhattak effectiveroutingtechniqueaugmentingdatacenterswitchfabricperformance AT yazhetang effectiveroutingtechniqueaugmentingdatacenterswitchfabricperformance AT hamzafahim effectiveroutingtechniqueaugmentingdatacenterswitchfabricperformance AT eidrehman effectiveroutingtechniqueaugmentingdatacenterswitchfabricperformance AT muhammadfaranmajeed effectiveroutingtechniqueaugmentingdatacenterswitchfabricperformance |
_version_ |
1724185112057217024 |