Summary: | The possibility of using a multifractal approach to study the tectonic disturbance of coals has been investigated. The relationship between the coal disturbance and the asymmetry of fractal spectra of coal images obtained by means of scanning electron microscopy (SEM) is revealed: it has been established that undisturbed coals are characterized, as a rule, by a symmetric fractal dimension spectrum, and the disturbed coals are described by a fractal spectrum with some degree of asymmetry. It is shown that if fractal spectra of images have a symmetric appearance, then brightness distributions of these images are well fitted by a lognormal curves and parameters of these fittings can be estimated through characteristics of the fractal spectra. By using multifractal analysis of images for more than 140 test coal specimens from the quiet zone of a seam and the outburst zone, differences in the brightness distributions for images of coals with various degrees of disturbance were revealed. The basis of the research is the assumption that differences in the structure of disturbed and undisturbed coals are reflected in histograms of the brightness distributions for images of coal specimens. According to the results of multifractal analysis of images for the test coal specimens, it was established that the brightness distributions for images of the surface of undisturbed coal specimens are lognormal, while the brightness distributions for images of the surface of highly disturbed coal specimens, in most cases, deviate from the lognormal one. The conducted studies allow us to conclude about the applicability of the multifractal approach for assessing the degree of coal disturbance using digital images of coal specimens.
|