Synthesis and structural analysis of Mo/B periodical multilayer X-ray mirrors for beyond extreme ultraviolet optics

The synthesis and structural analysis of Mo/B periodical multilayer X-ray mirrors (PMMs) for beyond extreme ultraviolet (BEUV) optics was performed. The PMMs were deposited by a combination of pulsed DC and radio frequency (RF) magnetron sputtering. The structure was analyzed by high-resolution tran...

Full description

Bibliographic Details
Main Authors: Oleksiy V. Penkov, Igor A. Kopylets, Valeriy V. Kondratenko, Mahdi Khadem
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127520308546
Description
Summary:The synthesis and structural analysis of Mo/B periodical multilayer X-ray mirrors (PMMs) for beyond extreme ultraviolet (BEUV) optics was performed. The PMMs were deposited by a combination of pulsed DC and radio frequency (RF) magnetron sputtering. The structure was analyzed by high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and grazing incidence X-ray reflectometry. The formation of 0.35 nm-thick interlayers comprised of a mixture of molybdenum borides was observed at the Mo/B interfaces. Furthermore, a low interface roughness of 0.3–0.4 nm was reported. The temperature of the substrate increased due to the increase in the sputtering power. This resulted in an increase in the thickness of the interlayers and the interface roughness; subsequently, the optical properties of the PMM deteriorated. Theoretical calculations were performed based on the real structure of the PMM to predict the reflectivity at a working wavelength of 6.7 nm. The reflectivity of approximately 53% was two times higher than that of the conventional B4C-based BEUV mirrors. Based on our study results, it can be concluded that the as-synthesized PMMs will perform better than the traditional mirrors and can be effectively used for the development of the next generation of BEUV lithography.
ISSN:0264-1275