Privacy via the Johnson-Lindenstrauss Transform

Suppose that party A collects private information about its users, where each user's data is represented as a bit vector. Suppose that party B has a proprietary data mining algorithm that requires estimating the distance between users, such as clustering or nearest neighbors. We ask if it is p...

Full description

Bibliographic Details
Main Authors: Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, Nina Mishra
Format: Article
Language:English
Published: Labor Dynamics Institute 2013-08-01
Series:The Journal of Privacy and Confidentiality
Subjects:
Online Access:https://journalprivacyconfidentiality.org/index.php/jpc/article/view/625
Description
Summary:Suppose that party A collects private information about its users, where each user's data is represented as a bit vector. Suppose that party B has a proprietary data mining algorithm that requires estimating the distance between users, such as clustering or nearest neighbors. We ask if it is possible for party A to publish some information about each user so that B can estimate the distance between users without being able to infer any private bit of a user. Our method involves projecting each user's representation into a random, lower-dimensional space via a sparse Johnson-Lindenstrauss transform and then adding Gaussian noise to each entry of the lower-dimensional representation. We show that the method preserves differential privacy---where the more privacy is desired, the larger the variance of the Gaussian noise. Further, we show how to approximate the true distances between users via only the lower-dimensional, perturbed data. Finally, we consider other perturbation methods such as randomized response and draw comparisons to sketch-based methods. While the goal of releasing user-specific data to third parties is more broad than preserving distances, this work shows that distance computations with privacy is an achievable goal.
ISSN:2575-8527