Improving External Quantum Efficiency by Subwavelength Nano Multi-Layered Structures for Optoelectronic Devices

Based on thin film optics (TFO) and finite element method (FEM), we have theoretically investigated improving external quantum efficiency (EQE) by anti-reflection (AR) films constructed from subwavelength nano multi-layers (NML) of low and high index materials, where the low and high index materials...

Full description

Bibliographic Details
Main Authors: Dong Wang, Rui Zhou, Yinghui Wu, Houzhi Cai, Yueqiang Zhang
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9224949/
Description
Summary:Based on thin film optics (TFO) and finite element method (FEM), we have theoretically investigated improving external quantum efficiency (EQE) by anti-reflection (AR) films constructed from subwavelength nano multi-layers (NML) of low and high index materials, where the low and high index materials are MgF<sub>2</sub> and Ta<sub>2</sub>O<sub>5</sub>, respectively. This kind of NML dielectric structures have the advantages of low-cost and flexible. Three kinds of substrates have been studied here, which are glass, polyethylene naphthalate (PEN), and polyethylene terephthalate (PET), respectively. TFO theory has been used to obtain the transmittance and reflectance, which agrees well with FEM results. For NML structure, TFO is more efficient than FEM in terms of calculation time and accuracy. The average AR effects (AAREs) are about 3.69%, 3.46% and 3.07% on glass substrate, about 6.15%, 5.56% and 5.02% on PEN substrate, and about 5.06%, 4.62% and 4.17% on PET substrate, for AR bands (ARBs) 350~800 nm, 350~1100 nm and 350~1500 nm, respectively. The results also reflect that wider AR bandwidth needs more NML layers. In practice, this kind of AR films can be widely applicable to enhance the EQE of the optoelectronic devices (OEDs).
ISSN:2169-3536