Optimization of Low-Power Line-Start PM Motor Using Gray Wolf Metaheuristic Algorithm
The paper presents the optimization method and computer software for the design of a low-power line-start permanent magnet synchronous motor (LSPMSM). The in-house-developed computer software was created with two independent modules: (a) the optimization procedure and (b) the numerical model of the...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/13/5/1186 |
Summary: | The paper presents the optimization method and computer software for the design of a low-power line-start permanent magnet synchronous motor (LSPMSM). The in-house-developed computer software was created with two independent modules: (a) the optimization procedure and (b) the numerical model of the motor. The optimization procedure used was a metaheuristic optimization method based on the gray wolf algorithm. Four design variables linked to the rotor structure were selected. The optimization process was performed from the rotor of a low-power induction motor (IM). The prototype of the motor (LSPMSM) was then built. The experimental measurements were performed for base the IM and optimized LSPMSM. The results of the measurements were compared for both motors. The experimental results confirmed the better performance of the designed motor in comparison to the induction motor. |
---|---|
ISSN: | 1996-1073 |