Quasi-polynomials of Capelli. III

In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint  countable  sets $X, Y$  are investigated.&...

Full description

Bibliographic Details
Main Authors: Antonov, Stepan Yuryevich, Antonova, Alina Vladimirovna
Format: Article
Language:English
Published: Saratov State University 2021-05-01
Series:Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
Subjects:
Online Access:https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2021/05/142-150antonov-antonova.pdf
id doaj-b869787cd4384fbba5eb1a35e2922036
record_format Article
spelling doaj-b869787cd4384fbba5eb1a35e29220362021-06-01T09:40:58ZengSaratov State UniversityИзвестия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика1816-97912541-90052021-05-0121214215010.18500/1816-9791-2021-21-2-142-150Quasi-polynomials of Capelli. IIIAntonov, Stepan Yuryevich0Antonova, Alina Vladimirovna1Kazan State Power Engineering University, Russia, Russia, 420066, Kazan, Krasnosel'skaya st., 51Kazan State Power Engineering University, Russia, Russia, 420066, Kazan, Krasnosel'skaya st., 51In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint  countable  sets $X, Y$  are investigated.  It  is shown  that  double Capelli's  polynomials $C_{4k,\{1\}}$, $C_{4k,\{2\}}$ are consequences of the standard polynomial $S^-_{2k}$. Moreover, it  is  proved that  these  polynomials equal to zero both for square and for rectangular matrices of corresponding  sizes. In this paper it is also shown that all Capelli's quasi-polynomials of the $(4k+1)$ degree are minimal identities of odd component of $Z_2$-graded matrix algebra $M^{(m, k)}(F)$ for any  $F$ and $m\ne k$.https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2021/05/142-150antonov-antonova.pdft-idealstandard polynomialcapelli polynomial
collection DOAJ
language English
format Article
sources DOAJ
author Antonov, Stepan Yuryevich
Antonova, Alina Vladimirovna
spellingShingle Antonov, Stepan Yuryevich
Antonova, Alina Vladimirovna
Quasi-polynomials of Capelli. III
Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
t-ideal
standard polynomial
capelli polynomial
author_facet Antonov, Stepan Yuryevich
Antonova, Alina Vladimirovna
author_sort Antonov, Stepan Yuryevich
title Quasi-polynomials of Capelli. III
title_short Quasi-polynomials of Capelli. III
title_full Quasi-polynomials of Capelli. III
title_fullStr Quasi-polynomials of Capelli. III
title_full_unstemmed Quasi-polynomials of Capelli. III
title_sort quasi-polynomials of capelli. iii
publisher Saratov State University
series Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
issn 1816-9791
2541-9005
publishDate 2021-05-01
description In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint  countable  sets $X, Y$  are investigated.  It  is shown  that  double Capelli's  polynomials $C_{4k,\{1\}}$, $C_{4k,\{2\}}$ are consequences of the standard polynomial $S^-_{2k}$. Moreover, it  is  proved that  these  polynomials equal to zero both for square and for rectangular matrices of corresponding  sizes. In this paper it is also shown that all Capelli's quasi-polynomials of the $(4k+1)$ degree are minimal identities of odd component of $Z_2$-graded matrix algebra $M^{(m, k)}(F)$ for any  $F$ and $m\ne k$.
topic t-ideal
standard polynomial
capelli polynomial
url https://mmi.sgu.ru/sites/mmi.sgu.ru/files/text-pdf/2021/05/142-150antonov-antonova.pdf
work_keys_str_mv AT antonovstepanyuryevich quasipolynomialsofcapelliiii
AT antonovaalinavladimirovna quasipolynomialsofcapelliiii
_version_ 1721410962922143744