Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization

<p/> <p>We discuss the existence and uniqueness of the solutions of a second-order <inline-formula> <graphic file="1687-2770-2011-929061-i2.gif"/></inline-formula>-point nonlocal boundary value problem by applying a generalized quasilinearization technique. A...

Full description

Bibliographic Details
Main Author: Alsaedi Ahmed
Format: Article
Language:English
Published: SpringerOpen 2011-01-01
Series:Boundary Value Problems
Online Access:http://www.boundaryvalueproblems.com/content/2011/929061
id doaj-b85f00f962124e8b8db1209eb6f7d114
record_format Article
spelling doaj-b85f00f962124e8b8db1209eb6f7d1142020-11-24T20:53:40ZengSpringerOpenBoundary Value Problems1687-27621687-27702011-01-0120111929061Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized QuasilinearizationAlsaedi Ahmed<p/> <p>We discuss the existence and uniqueness of the solutions of a second-order <inline-formula> <graphic file="1687-2770-2011-929061-i2.gif"/></inline-formula>-point nonlocal boundary value problem by applying a generalized quasilinearization technique. A monotone sequence of solutions converging uniformly and quadratically to a unique solution of the problem is presented.</p>http://www.boundaryvalueproblems.com/content/2011/929061
collection DOAJ
language English
format Article
sources DOAJ
author Alsaedi Ahmed
spellingShingle Alsaedi Ahmed
Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
Boundary Value Problems
author_facet Alsaedi Ahmed
author_sort Alsaedi Ahmed
title Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
title_short Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
title_full Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
title_fullStr Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
title_full_unstemmed Approximation of Solutions for Second-Order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-Point Nonlocal Boundary Value Problems via the Method of Generalized Quasilinearization
title_sort approximation of solutions for second-order <inline-formula> <graphic file="1687-2770-2011-929061-i1.gif"/></inline-formula>-point nonlocal boundary value problems via the method of generalized quasilinearization
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2762
1687-2770
publishDate 2011-01-01
description <p/> <p>We discuss the existence and uniqueness of the solutions of a second-order <inline-formula> <graphic file="1687-2770-2011-929061-i2.gif"/></inline-formula>-point nonlocal boundary value problem by applying a generalized quasilinearization technique. A monotone sequence of solutions converging uniformly and quadratically to a unique solution of the problem is presented.</p>
url http://www.boundaryvalueproblems.com/content/2011/929061
work_keys_str_mv AT alsaediahmed approximationofsolutionsforsecondorderinlineformulagraphicfile168727702011929061i1gifinlineformulapointnonlocalboundaryvalueproblemsviathemethodofgeneralizedquasilinearization
_version_ 1716796648406908928