Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators

The execution time that takes to perform numerical simulation of a chaotic oscillator mainly depends on the time-step <i>h</i>. This paper shows that the optimization of chaotic oscillators can be enhanced by estimating the highest <i>h</i> in either one-step or multi-step me...

Full description

Bibliographic Details
Main Authors: Martín Alejandro Valencia-Ponce , Esteban Tlelo-Cuautle, Luis Gerardo de la Fraga
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/16/1938
id doaj-b85991fb669342cfbf695746dfe59659
record_format Article
spelling doaj-b85991fb669342cfbf695746dfe596592021-08-26T14:02:19ZengMDPI AGMathematics2227-73902021-08-0191938193810.3390/math9161938Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic OscillatorsMartín Alejandro Valencia-Ponce 0Esteban Tlelo-Cuautle1Luis Gerardo de la Fraga2Department of Electronics, INAOE, Tonantzintla, Puebla 72840, MexicoDepartment of Electronics, INAOE, Tonantzintla, Puebla 72840, MexicoComputer Science Department, CINVESTAV, Av. IPN 2508, Mexico City 07360, MexicoThe execution time that takes to perform numerical simulation of a chaotic oscillator mainly depends on the time-step <i>h</i>. This paper shows that the optimization of chaotic oscillators can be enhanced by estimating the highest <i>h</i> in either one-step or multi-step methods. Four chaotic oscillators are used as a case study, and the optimization of their Kaplan-Yorke dimension (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mi>K</mi><mi>Y</mi></mrow></msub></semantics></math></inline-formula>) is performed by applying three metaheuristics, namely: particle swarm optimization (PSO), many optimizing liaison (MOL), and differential evolution (DE) algorithms. Three representative one-step and three multi-step methods are used to solve the four chaotic oscillators, for which the estimation of the highest <i>h</i> is obtained from their stability analysis. The optimization results show the effectiveness of using a high <i>h</i> value for the six numerical methods in reducing execution time while maximizing the positive Lyapunov exponent (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>E</mi><mo>+</mo></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mi>K</mi><mi>Y</mi></mrow></msub></semantics></math></inline-formula> of the chaotic oscillators by applying PSO, MOL, and DE algorithms.https://www.mdpi.com/2227-7390/9/16/1938chaotic oscillatortime-stepone-step methodmulti-step methodparticle swarm optimization (PSO)many optimizing liaison (MOL)
collection DOAJ
language English
format Article
sources DOAJ
author Martín Alejandro Valencia-Ponce 
Esteban Tlelo-Cuautle
Luis Gerardo de la Fraga
spellingShingle Martín Alejandro Valencia-Ponce 
Esteban Tlelo-Cuautle
Luis Gerardo de la Fraga
Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
Mathematics
chaotic oscillator
time-step
one-step method
multi-step method
particle swarm optimization (PSO)
many optimizing liaison (MOL)
author_facet Martín Alejandro Valencia-Ponce 
Esteban Tlelo-Cuautle
Luis Gerardo de la Fraga
author_sort Martín Alejandro Valencia-Ponce 
title Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
title_short Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
title_full Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
title_fullStr Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
title_full_unstemmed Estimating the Highest Time-Step in Numerical Methods to Enhance the Optimization of Chaotic Oscillators
title_sort estimating the highest time-step in numerical methods to enhance the optimization of chaotic oscillators
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-08-01
description The execution time that takes to perform numerical simulation of a chaotic oscillator mainly depends on the time-step <i>h</i>. This paper shows that the optimization of chaotic oscillators can be enhanced by estimating the highest <i>h</i> in either one-step or multi-step methods. Four chaotic oscillators are used as a case study, and the optimization of their Kaplan-Yorke dimension (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mi>K</mi><mi>Y</mi></mrow></msub></semantics></math></inline-formula>) is performed by applying three metaheuristics, namely: particle swarm optimization (PSO), many optimizing liaison (MOL), and differential evolution (DE) algorithms. Three representative one-step and three multi-step methods are used to solve the four chaotic oscillators, for which the estimation of the highest <i>h</i> is obtained from their stability analysis. The optimization results show the effectiveness of using a high <i>h</i> value for the six numerical methods in reducing execution time while maximizing the positive Lyapunov exponent (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>E</mi><mo>+</mo></mrow></semantics></math></inline-formula>) and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>D</mi><mrow><mi>K</mi><mi>Y</mi></mrow></msub></semantics></math></inline-formula> of the chaotic oscillators by applying PSO, MOL, and DE algorithms.
topic chaotic oscillator
time-step
one-step method
multi-step method
particle swarm optimization (PSO)
many optimizing liaison (MOL)
url https://www.mdpi.com/2227-7390/9/16/1938
work_keys_str_mv AT martinalejandrovalenciaponce estimatingthehighesttimestepinnumericalmethodstoenhancetheoptimizationofchaoticoscillators
AT estebantlelocuautle estimatingthehighesttimestepinnumericalmethodstoenhancetheoptimizationofchaoticoscillators
AT luisgerardodelafraga estimatingthehighesttimestepinnumericalmethodstoenhancetheoptimizationofchaoticoscillators
_version_ 1721191736440520704