High-dimensional exciton-vibrational wave-packet dynamics in the FMO complex. influence of site-specific spectral densities

The correlated exciton-vibrational dynamics of the Fenna-Matthews-Olson (FMO) complex is studied using Multi-layer Multi-configuration Time-dependent Hartree (ML-MCTDH) wavepacket propagation. Exciton populations and coherences are shown to be sensitive to the details of the spectral density.

Bibliographic Details
Main Authors: Schulze Jan, Shibl Mohamed F., Al-Marri Mohammed J., Kuhn Oliver
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/10/epjconf_up2019_10010.pdf
Description
Summary:The correlated exciton-vibrational dynamics of the Fenna-Matthews-Olson (FMO) complex is studied using Multi-layer Multi-configuration Time-dependent Hartree (ML-MCTDH) wavepacket propagation. Exciton populations and coherences are shown to be sensitive to the details of the spectral density.
ISSN:2100-014X