Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans.
BACKGROUND: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketol...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2008-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC2585806?pdf=render |
id |
doaj-b83f86b0c73c4496bea2871da073cd18 |
---|---|
record_format |
Article |
spelling |
doaj-b83f86b0c73c4496bea2871da073cd182020-11-24T21:12:26ZengPublic Library of Science (PLoS)PLoS ONE1932-62032008-01-01312e384710.1371/journal.pone.0003847Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans.Gianni PanagiotouMikael R AndersenThomas GrotkjaerTorsten B RegueiraGerald HofmannJens NielsenLisbeth OlssonBACKGROUND: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketolase pathway, and investigated the role of an increased phosphoketolase activity. METHODOLOGY/PRINCIPAL FINDINGS: Over-expression of the phosphoketolase gene (phk) improved the specific growth rate on xylose, glycerol and ethanol. Transcriptome analysis showed that a total of 1,222 genes were significantly affected by over-expression of the phk, while more than half of the affected genes were carbon source specific. During growth on glucose medium, the transcriptome analysis showed that the response to phk over-expression is targeted to neutralize the effect of the over-expression by regulating the acetate metabolism and initiate a growth dampening response. CONCLUSIONS/SIGNIFICANCE: Metabolic flux analysis using (13)C-labelled glucose, showed that over-expression of phosphoketolase added flexibility to the central metabolism. Our findings further suggests that A. nidulans is not optimized for growth on xylose, glycerol or ethanol as the sole carbon sources.http://europepmc.org/articles/PMC2585806?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gianni Panagiotou Mikael R Andersen Thomas Grotkjaer Torsten B Regueira Gerald Hofmann Jens Nielsen Lisbeth Olsson |
spellingShingle |
Gianni Panagiotou Mikael R Andersen Thomas Grotkjaer Torsten B Regueira Gerald Hofmann Jens Nielsen Lisbeth Olsson Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. PLoS ONE |
author_facet |
Gianni Panagiotou Mikael R Andersen Thomas Grotkjaer Torsten B Regueira Gerald Hofmann Jens Nielsen Lisbeth Olsson |
author_sort |
Gianni Panagiotou |
title |
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. |
title_short |
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. |
title_full |
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. |
title_fullStr |
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. |
title_full_unstemmed |
Systems analysis unfolds the relationship between the phosphoketolase pathway and growth in Aspergillus nidulans. |
title_sort |
systems analysis unfolds the relationship between the phosphoketolase pathway and growth in aspergillus nidulans. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2008-01-01 |
description |
BACKGROUND: Aspergillus nidulans is an important model organism for studies on fundamental eukaryotic cell biology and on industrial processes due to its close relation to A. niger and A. oryzae. Here we identified the gene coding for a novel metabolic pathway in A. nidulans, namely the phosphoketolase pathway, and investigated the role of an increased phosphoketolase activity. METHODOLOGY/PRINCIPAL FINDINGS: Over-expression of the phosphoketolase gene (phk) improved the specific growth rate on xylose, glycerol and ethanol. Transcriptome analysis showed that a total of 1,222 genes were significantly affected by over-expression of the phk, while more than half of the affected genes were carbon source specific. During growth on glucose medium, the transcriptome analysis showed that the response to phk over-expression is targeted to neutralize the effect of the over-expression by regulating the acetate metabolism and initiate a growth dampening response. CONCLUSIONS/SIGNIFICANCE: Metabolic flux analysis using (13)C-labelled glucose, showed that over-expression of phosphoketolase added flexibility to the central metabolism. Our findings further suggests that A. nidulans is not optimized for growth on xylose, glycerol or ethanol as the sole carbon sources. |
url |
http://europepmc.org/articles/PMC2585806?pdf=render |
work_keys_str_mv |
AT giannipanagiotou systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT mikaelrandersen systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT thomasgrotkjaer systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT torstenbregueira systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT geraldhofmann systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT jensnielsen systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans AT lisbetholsson systemsanalysisunfoldstherelationshipbetweenthephosphoketolasepathwayandgrowthinaspergillusnidulans |
_version_ |
1716750918421053440 |