Summary: | With the development of increasingly advanced information technology and electronic technology, especially with regard to physical information systems, cloud computing systems, and social services, big data will be widely visible, creating benefits for people and at the same time facing huge challenges. In addition, with the advent of the era of big data, the scale of data sets is getting larger and larger. Traditional data analysis methods can no longer solve the problem of large-scale data sets, and the hidden information behind big data is digging out, especially in the field of e-commerce. We have become a key factor in competition among enterprises. We use a support vector machine method based on parallel computing to analyze the data. First, the training samples are divided into several working subsets through the SOM self-organizing neural network classification method. Compared with the ever-increasing progress of information technology and electronic equipment, especially the related physical information system finally merges the training results of each working set, so as to quickly deal with the problem of massive data prediction and analysis. This paper proposes that big data has the flexibility of expansion and quality assessment system, so it is meaningful to replace the double-sidedness of quality assessment with big data. Finally, considering the excellent performance of parallel support vector machines in data mining and analysis, we apply this method to the big data analysis of e-commerce. The research results show that parallel support vector machines can solve the problem of processing large-scale data sets. The emergence of data dirty problems has increased the effective rate by at least 70%.
|