Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats
<p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p&g...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-08-01
|
Series: | BMC Musculoskeletal Disorders |
Online Access: | http://www.biomedcentral.com/1471-2474/11/181 |
id |
doaj-b819ffc2ebfc4c16b70167ef11c30194 |
---|---|
record_format |
Article |
spelling |
doaj-b819ffc2ebfc4c16b70167ef11c301942020-11-25T01:56:01ZengBMCBMC Musculoskeletal Disorders1471-24742010-08-0111118110.1186/1471-2474-11-181Entrapment neuropathy results in different microRNA expression patterns from denervation injury in ratsRau Cheng-ShyuanJeng JonathanJeng Seng-FengLu Tsu-HsiangChen Yi-ChunLiliang Po-ChouWu Chia-JungLin Chia-JungHsieh Ching-Hua<p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p>Methods</p> <p>The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).</p> <p>Results</p> <p>In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.</p> <p>Conclusions</p> <p>This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.</p> http://www.biomedcentral.com/1471-2474/11/181 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rau Cheng-Shyuan Jeng Jonathan Jeng Seng-Feng Lu Tsu-Hsiang Chen Yi-Chun Liliang Po-Chou Wu Chia-Jung Lin Chia-Jung Hsieh Ching-Hua |
spellingShingle |
Rau Cheng-Shyuan Jeng Jonathan Jeng Seng-Feng Lu Tsu-Hsiang Chen Yi-Chun Liliang Po-Chou Wu Chia-Jung Lin Chia-Jung Hsieh Ching-Hua Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats BMC Musculoskeletal Disorders |
author_facet |
Rau Cheng-Shyuan Jeng Jonathan Jeng Seng-Feng Lu Tsu-Hsiang Chen Yi-Chun Liliang Po-Chou Wu Chia-Jung Lin Chia-Jung Hsieh Ching-Hua |
author_sort |
Rau Cheng-Shyuan |
title |
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats |
title_short |
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats |
title_full |
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats |
title_fullStr |
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats |
title_full_unstemmed |
Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats |
title_sort |
entrapment neuropathy results in different microrna expression patterns from denervation injury in rats |
publisher |
BMC |
series |
BMC Musculoskeletal Disorders |
issn |
1471-2474 |
publishDate |
2010-08-01 |
description |
<p>Abstract</p> <p>Background</p> <p>To compare the microRNA (miRNA) expression profiles in neurons and innervated muscles after sciatic nerve entrapment using a non-constrictive silastic tube, subsequent surgical decompression, and denervation injury.</p> <p>Methods</p> <p>The experimental L4-L6 spinal segments, dorsal root ganglia (DRGs), and soleus muscles from each experimental group (sham control, denervation, entrapment, and decompression) were analyzed using an Agilent rat miRNA array to detect dysregulated miRNAs. In addition, muscle-specific miRNAs (miR-1, -133a, and -206) and selectively upregulated miRNAs were subsequently quantified using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR).</p> <p>Results</p> <p>In the soleus muscles, 37 of the 47 miRNAs (13.4% of the 350 unique miRNAs tested) that were significantly downregulated after 6 months of entrapment neuropathy were also among the 40 miRNAs (11.4% of the 350 unique miRNAs tested) that were downregulated after 3 months of decompression. No miRNA was upregulated in both groups. In contrast, only 3 miRNAs were upregulated and 3 miRNAs were downregulated in the denervated muscle after 6 months. In the DRGs, 6 miRNAs in the entrapment group (miR-9, miR-320, miR-324-3p, miR-672, miR-466b, and miR-144) and 3 miRNAs in the decompression group (miR-9, miR-320, and miR-324-3p) were significantly downregulated. No miRNA was upregulated in both groups. We detected 1 downregulated miRNA (miR-144) and 1 upregulated miRNA (miR-21) after sciatic nerve denervation. We were able to separate the muscle or DRG samples into denervation or entrapment neuropathy by performing unsupervised hierarchal clustering analysis. Regarding the muscle-specific miRNAs, real-time RT-PCR analysis revealed an ~50% decrease in miR-1 and miR-133a expression levels at 3 and 6 months after entrapment, whereas miR-1 and miR-133a levels were unchanged and were decreased after decompression at 1 and 3 months. In contrast, there were no statistical differences in the expression of miR-206 during nerve entrapment and after decompression. The expression of muscle-specific miRNAs in entrapment neuropathy is different from our previous observations in sciatic nerve denervation injury.</p> <p>Conclusions</p> <p>This study revealed the different involvement of miRNAs in neurons and innervated muscles after entrapment neuropathy and denervation injury, and implied that epigenetic regulation is different in these two conditions.</p> |
url |
http://www.biomedcentral.com/1471-2474/11/181 |
work_keys_str_mv |
AT rauchengshyuan entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT jengjonathan entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT jengsengfeng entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT lutsuhsiang entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT chenyichun entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT liliangpochou entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT wuchiajung entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT linchiajung entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats AT hsiehchinghua entrapmentneuropathyresultsindifferentmicrornaexpressionpatternsfromdenervationinjuryinrats |
_version_ |
1724982125303693312 |