Three-nucleon bound state calculations using the three dimensional formalism

The traditional method of carrying out few-nucleon calculations is based on the angular momentum decomposition of operators relevant to the calculation. Expressing operators using a finite-sized partial wave basis enables the calculations to be carried out using a small amount of numerical work. Unf...

Full description

Bibliographic Details
Main Authors: Topolnicki Kacper, Golak Jacek, Skibiński Roman, Witała Henryk, Volkotrub Yuriy, Soloviov Volodymyr, Grassi Alessandro
Format: Article
Language:English
Published: EDP Sciences 2019-01-01
Series:EPJ Web of Conferences
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2019/04/epjconf_meson2019_05021.pdf
Description
Summary:The traditional method of carrying out few-nucleon calculations is based on the angular momentum decomposition of operators relevant to the calculation. Expressing operators using a finite-sized partial wave basis enables the calculations to be carried out using a small amount of numerical work. Unfortunately, certain calculations that involve higher energies or long range potentials, require including a large number of partial waves in order to get converged results. This is problematic because such an approach requires a numerical implementation of heavily oscillating functions. Modern computers made it possible to carry out few-nucleon calculations without using angular momentum decomposition and instead to work directly with the three dimensional degrees of freedom of the nucleons. In this paper we briefly describe the, so called 3D approach and present preliminary results related to the 3He bound state obtained within this formalism.
ISSN:2100-014X