Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The l...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-05-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/8/5/763 |
id |
doaj-b7b7e2dfb2334472abbd17f67b38489e |
---|---|
record_format |
Article |
spelling |
doaj-b7b7e2dfb2334472abbd17f67b38489e2020-11-25T02:01:44ZengMDPI AGMathematics2227-73902020-05-01876376310.3390/math8050763Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy MapYoung Hee Geum0Young Ik Kim1Department of Mathematics, Dankook University, Cheonan 330-714, KoreaDepartment of Mathematics, Dankook University, Cheonan 330-714, KoreaOptimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-dependent connected components. When a red fixed component in the parameter plane branches into a <i>q</i>-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.https://www.mdpi.com/2227-7390/8/5/763parameter planeMöbius mapbifurcation pointcirclecardioidfourth-order |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Young Hee Geum Young Ik Kim |
spellingShingle |
Young Hee Geum Young Ik Kim Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map Mathematics parameter plane Möbius map bifurcation point circle cardioid fourth-order |
author_facet |
Young Hee Geum Young Ik Kim |
author_sort |
Young Hee Geum |
title |
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map |
title_short |
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map |
title_full |
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map |
title_fullStr |
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map |
title_full_unstemmed |
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map |
title_sort |
computational bifurcations occurring on red fixed components in the <i>λ</i>-parameter plane for a family of optimal fourth-order multiple-root finders under the möbius conjugacy map |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2020-05-01 |
description |
Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-dependent connected components. When a red fixed component in the parameter plane branches into a <i>q</i>-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper. |
topic |
parameter plane Möbius map bifurcation point circle cardioid fourth-order |
url |
https://www.mdpi.com/2227-7390/8/5/763 |
work_keys_str_mv |
AT youngheegeum computationalbifurcationsoccurringonredfixedcomponentsintheiliparameterplaneforafamilyofoptimalfourthordermultiplerootfindersunderthemobiusconjugacymap AT youngikkim computationalbifurcationsoccurringonredfixedcomponentsintheiliparameterplaneforafamilyofoptimalfourthordermultiplerootfindersunderthemobiusconjugacymap |
_version_ |
1724956198916063232 |