Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map

Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The l...

Full description

Bibliographic Details
Main Authors: Young Hee Geum, Young Ik Kim
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/5/763
id doaj-b7b7e2dfb2334472abbd17f67b38489e
record_format Article
spelling doaj-b7b7e2dfb2334472abbd17f67b38489e2020-11-25T02:01:44ZengMDPI AGMathematics2227-73902020-05-01876376310.3390/math8050763Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy MapYoung Hee Geum0Young Ik Kim1Department of Mathematics, Dankook University, Cheonan 330-714, KoreaDepartment of Mathematics, Dankook University, Cheonan 330-714, KoreaOptimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-dependent connected components. When a red fixed component in the parameter plane branches into a <i>q</i>-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.https://www.mdpi.com/2227-7390/8/5/763parameter planeMöbius mapbifurcation pointcirclecardioidfourth-order
collection DOAJ
language English
format Article
sources DOAJ
author Young Hee Geum
Young Ik Kim
spellingShingle Young Hee Geum
Young Ik Kim
Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
Mathematics
parameter plane
Möbius map
bifurcation point
circle
cardioid
fourth-order
author_facet Young Hee Geum
Young Ik Kim
author_sort Young Hee Geum
title Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
title_short Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
title_full Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
title_fullStr Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
title_full_unstemmed Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map
title_sort computational bifurcations occurring on red fixed components in the <i>λ</i>-parameter plane for a family of optimal fourth-order multiple-root finders under the möbius conjugacy map
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2020-05-01
description Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-dependent connected components. When a red fixed component in the parameter plane branches into a <i>q</i>-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.
topic parameter plane
Möbius map
bifurcation point
circle
cardioid
fourth-order
url https://www.mdpi.com/2227-7390/8/5/763
work_keys_str_mv AT youngheegeum computationalbifurcationsoccurringonredfixedcomponentsintheiliparameterplaneforafamilyofoptimalfourthordermultiplerootfindersunderthemobiusconjugacymap
AT youngikkim computationalbifurcationsoccurringonredfixedcomponentsintheiliparameterplaneforafamilyofoptimalfourthordermultiplerootfindersunderthemobiusconjugacymap
_version_ 1724956198916063232