Computational Bifurcations Occurring on Red Fixed Components in the <i>λ</i>-Parameter Plane for a Family of Optimal Fourth-Order Multiple-Root Finders under the Möbius Conjugacy Map

Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The l...

Full description

Bibliographic Details
Main Authors: Young Hee Geum, Young Ik Kim
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/5/763
Description
Summary:Optimal fourth-order multiple-root finders with parameter <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula> were conjugated via the Möbius map applied to a simple polynomial function. The long-term dynamics of these conjugated maps in the <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameter plane was analyzed to discover some properties of periodic, bounded and chaotic orbits. The <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-parameters for periodic orbits in the parameter plane are painted in different colors depending on their periods, and the bounded or chaotic ones are colored black to illustrate <inline-formula> <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> </inline-formula>-dependent connected components. When a red fixed component in the parameter plane branches into a <i>q</i>-periodic component, we encounter geometric bifurcation phenomena whose characteristics determine the desired boundary equation and bifurcation point. Computational results along with illustrated components support the bifurcation phenomena underlying this paper.
ISSN:2227-7390