Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines
Objective Cancer stem cells (CSCs) have important roles in survival and chemoresistance. These cells are commonly recognized with CD44 and CD24 markers. In this study, we aimed to analyze the effects of mtDNA content on cell surface positivity for anti-CD24 and anti-CD44 antibodies and chemoresista...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Royan Institute (ACECR), Tehran
2018-06-01
|
Series: | Cell Journal |
Subjects: | |
Online Access: | http://celljournal.org/journal/article/21028/download |
id |
doaj-b7acfd76776c4fdbbecd8c08718e1055 |
---|---|
record_format |
Article |
spelling |
doaj-b7acfd76776c4fdbbecd8c08718e10552020-11-25T01:37:47ZengRoyan Institute (ACECR), TehranCell Journal2228-58062228-58142018-06-0120331231710.22074/cellj.2018.5309Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell LinesGökhan Terzioğlu0Özlem Türksoy1Ömer Faruk Bayrak2Department of Biotechnology, Yeditepe University, Inönü Mahallesi, Kayışdağı Cad. 326A 26 Ağustos Yerleşimi, 34755 Ataşehir-İstanbul, TurkeyDepartment of Biotechnology, Yeditepe University, Inönü Mahallesi, Kayışdağı Cad. 326A 26 Ağustos Yerleşimi, 34755 Ataşehir-İstanbul, TurkeyDepartment of Medical Genetics, Faculty of Medicine, Yeditepe University, Inönü Mahallesi, Kayışdağı Cad. 326A 26 Ağustos Yerleşimi, 34755 Ataşehir-İstanbul, TurkeyObjective Cancer stem cells (CSCs) have important roles in survival and chemoresistance. These cells are commonly recognized with CD44 and CD24 markers. In this study, we aimed to analyze the effects of mtDNA content on cell surface positivity for anti-CD24 and anti-CD44 antibodies and chemoresistance level in AGS, HGC-27 and MKN-45 gastric cancer (GC) cell lines and to determine a setpoint for mtDNA copy for each cell line. Materials and Methods In this experimental study, we initially decreased mtDNA levels in AGS, HGC-27 and MKN-45 by EtBr treatment. This depletion was confirmed with quantitative polymerase chain reaction (qPCR). Changes in cell surface positivity for anti-CD24 and anti-CD44 antibodies in control and mtDNA-depleted AGS, HGC-27 and MKN-45 were then analyzed with flow cytometry. Changes in chemoresistance (5-FU and cisplatin) were analyzed for all cell lines. The relationship between mtDNA content and cell surface positivity for CD24 and CD44 markers was examined. Results The highest CD44 positivity was found in HGC-27 and MKN-45 ρlow cells which had 33-40% mtDNA content of control cells, however, CD24 positivity decreased with mtDNA depletion in all cell lines. The highest chemoresistance levels were found in all ρlow cells. mtDNA-recovered (i.e. reverted) HGC-27 and MKN-45 cells partially maintained their increased chemoresistance while reverted AGS cells did not maintain an increased level of chemoresistance. Conclusion mtDNA depletion triggers chemoresistance in cancer cell lines and is correlated with increase and decrease of CD44 and CD24 positivity respectively in HGC-27 and MKN-45 GC cell lines. A mtDNA content above or below the identified setpoint (33-40% of that in control cells), results in the decrease of CD44 positivity and chemoresistance levels.http://celljournal.org/journal/article/21028/downloadAntineoplastic Drug ResistanceGastric CancerMitochondriaMitochondrial DNA |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gökhan Terzioğlu Özlem Türksoy Ömer Faruk Bayrak |
spellingShingle |
Gökhan Terzioğlu Özlem Türksoy Ömer Faruk Bayrak Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines Cell Journal Antineoplastic Drug Resistance Gastric Cancer Mitochondria Mitochondrial DNA |
author_facet |
Gökhan Terzioğlu Özlem Türksoy Ömer Faruk Bayrak |
author_sort |
Gökhan Terzioğlu |
title |
Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines |
title_short |
Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines |
title_full |
Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines |
title_fullStr |
Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines |
title_full_unstemmed |
Identification of An mtDNA Setpoint Associated with Highest Levels of CD44 Positivity and Chemoresistance in HGC-27 and MKN-45 Gastric Cancer Cell Lines |
title_sort |
identification of an mtdna setpoint associated with highest levels of cd44 positivity and chemoresistance in hgc-27 and mkn-45 gastric cancer cell lines |
publisher |
Royan Institute (ACECR), Tehran |
series |
Cell Journal |
issn |
2228-5806 2228-5814 |
publishDate |
2018-06-01 |
description |
Objective
Cancer stem cells (CSCs) have important roles in survival and chemoresistance. These cells are commonly recognized with CD44 and CD24 markers. In this study, we aimed to analyze the effects of mtDNA content on cell surface positivity for anti-CD24 and anti-CD44 antibodies and chemoresistance level in AGS, HGC-27 and MKN-45 gastric cancer (GC) cell lines and to determine a setpoint for mtDNA copy for each cell line.
Materials and Methods
In this experimental study, we initially decreased mtDNA levels in AGS, HGC-27 and MKN-45 by EtBr treatment. This depletion was confirmed with quantitative polymerase chain reaction (qPCR). Changes in cell surface positivity for anti-CD24 and anti-CD44 antibodies in control and mtDNA-depleted AGS, HGC-27 and MKN-45 were then analyzed with flow cytometry. Changes in chemoresistance (5-FU and cisplatin) were analyzed for all cell lines. The relationship between mtDNA content and cell surface positivity for CD24 and CD44 markers was examined.
Results
The highest CD44 positivity was found in HGC-27 and MKN-45 ρlow cells which had 33-40% mtDNA content of control cells, however, CD24 positivity decreased with mtDNA depletion in all cell lines. The highest chemoresistance levels were found in all ρlow cells. mtDNA-recovered (i.e. reverted) HGC-27 and MKN-45 cells partially maintained their increased chemoresistance while reverted AGS cells did not maintain an increased level of chemoresistance.
Conclusion
mtDNA depletion triggers chemoresistance in cancer cell lines and is correlated with increase and decrease of CD44 and CD24 positivity respectively in HGC-27 and MKN-45 GC cell lines. A mtDNA content above or below the identified setpoint (33-40% of that in control cells), results in the decrease of CD44 positivity and chemoresistance levels. |
topic |
Antineoplastic Drug Resistance Gastric Cancer Mitochondria Mitochondrial DNA |
url |
http://celljournal.org/journal/article/21028/download |
work_keys_str_mv |
AT gokhanterzioglu identificationofanmtdnasetpointassociatedwithhighestlevelsofcd44positivityandchemoresistanceinhgc27andmkn45gastriccancercelllines AT ozlemturksoy identificationofanmtdnasetpointassociatedwithhighestlevelsofcd44positivityandchemoresistanceinhgc27andmkn45gastriccancercelllines AT omerfarukbayrak identificationofanmtdnasetpointassociatedwithhighestlevelsofcd44positivityandchemoresistanceinhgc27andmkn45gastriccancercelllines |
_version_ |
1725057367520837632 |