Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearit...
Main Authors: | Fita Mega Kusuma, Arief Wibowo |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Airlangga
2018-10-01
|
Series: | Jurnal Biometrika dan Kependudukan |
Subjects: | |
Online Access: | https://e-journal.unair.ac.id/JBK/article/view/4833 |
Similar Items
-
A MODEL TO MINIMIZE MULTICOLLINEARITY EFFECTS
by: Baciu Olivia, et al.
Published: (2013-07-01) -
Analisis Angka Harapan Hidup di Jawa Timur Tahun 2015
by: Lina Septi Danasari, et al.
Published: (2018-10-01) -
Residual Control Chart for Binary Response with Multicollinearity Covariates by Neural Network Model
by: Jong-Min Kim, et al.
Published: (2020-03-01) -
PENERAPAN METODE GENERALIZED RIDGE REGRESSION DALAM MENGATASI MASALAH MULTIKOLINEARITAS
by: NI KETUT TRI UTAMI, et al.
Published: (2013-01-01) -
Analisis Variabel Penyebab Balita Gizi Buruk di Provinsi Jawa Timur Tahun 2015
by: Lisa Agustin
Published: (2019-07-01)