Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014

Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearit...

Full description

Bibliographic Details
Main Authors: Fita Mega Kusuma, Arief Wibowo
Format: Article
Language:English
Published: Universitas Airlangga 2018-10-01
Series:Jurnal Biometrika dan Kependudukan
Subjects:
Online Access:https://e-journal.unair.ac.id/JBK/article/view/4833
id doaj-b7a3ae128d2940ca8c3ca4f3acd32d3a
record_format Article
spelling doaj-b7a3ae128d2940ca8c3ca4f3acd32d3a2021-06-02T05:37:42ZengUniversitas AirlanggaJurnal Biometrika dan Kependudukan2302-707X2540-88282018-10-0162899710.20473/jbk.v6i2.2017.89-975030Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014Fita Mega Kusuma0Arief Wibowo1Fakultas Kesehatan Masyarakat, Universitas AirlanggaFakultas Kesehatan Masyarakat, Universitas AirlanggaCorrelation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearity in multiple linear regression and know the dominant factor to the research. PCA method has the advantage of clearing the correlation without losing the original variable. Case study a risk factor that affects the incidence of pneumonia infants in East Java 2014. This non reactive research because uses publication data of health profil of East Java. Result of this research multicollinearity problem in research data when detected by VIF/tolerance method. Variable of vitamin A coverage, measles immunization coverage and health service coverage are the variables that observed multicollinearity. A multicollinearity solution produces (F1) or new variable(coverage of vitamin A, immunization measles and health service), reduction of three variables that multicollinearity to not multicollinearity with VIF value of 1.608 < 10. Results of this study also proves the weakness of PCA method in analyzing the significance. PCA method shows the most influencing factors on the incidence of pneumonia of children under five year. Dominant factor in this research coverage of infant health services covering, coverage of vitamin A and coverage of measles immunization. Coverage factor of health services has a coefficient matrix value of 0.890 or 89% more influential than other factor.https://e-journal.unair.ac.id/JBK/article/view/4833PCA (Principal Component Analysis), VIF/Tolerance, multicollinearity, pneumonia children under five year
collection DOAJ
language English
format Article
sources DOAJ
author Fita Mega Kusuma
Arief Wibowo
spellingShingle Fita Mega Kusuma
Arief Wibowo
Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
Jurnal Biometrika dan Kependudukan
PCA (Principal Component Analysis), VIF/Tolerance, multicollinearity, pneumonia children under five year
author_facet Fita Mega Kusuma
Arief Wibowo
author_sort Fita Mega Kusuma
title Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
title_short Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
title_full Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
title_fullStr Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
title_full_unstemmed Principal Component Analysis (PCA) untuk Mengatasi Multikolinieritas terhadap Faktor Angka Kejadian Pneumonia Balita di Jawa Timur Tahun 2014
title_sort principal component analysis (pca) untuk mengatasi multikolinieritas terhadap faktor angka kejadian pneumonia balita di jawa timur tahun 2014
publisher Universitas Airlangga
series Jurnal Biometrika dan Kependudukan
issn 2302-707X
2540-8828
publishDate 2018-10-01
description Correlation between independent variables in multiple linear regression model called multicollinearity. One of the assumptions of multiple linear regression free from multicollinearity problem. Principal Component Analysis (PCA) method in this study aims to overcome the existence of multicollinearity in multiple linear regression and know the dominant factor to the research. PCA method has the advantage of clearing the correlation without losing the original variable. Case study a risk factor that affects the incidence of pneumonia infants in East Java 2014. This non reactive research because uses publication data of health profil of East Java. Result of this research multicollinearity problem in research data when detected by VIF/tolerance method. Variable of vitamin A coverage, measles immunization coverage and health service coverage are the variables that observed multicollinearity. A multicollinearity solution produces (F1) or new variable(coverage of vitamin A, immunization measles and health service), reduction of three variables that multicollinearity to not multicollinearity with VIF value of 1.608 < 10. Results of this study also proves the weakness of PCA method in analyzing the significance. PCA method shows the most influencing factors on the incidence of pneumonia of children under five year. Dominant factor in this research coverage of infant health services covering, coverage of vitamin A and coverage of measles immunization. Coverage factor of health services has a coefficient matrix value of 0.890 or 89% more influential than other factor.
topic PCA (Principal Component Analysis), VIF/Tolerance, multicollinearity, pneumonia children under five year
url https://e-journal.unair.ac.id/JBK/article/view/4833
work_keys_str_mv AT fitamegakusuma principalcomponentanalysispcauntukmengatasimultikolinieritasterhadapfaktorangkakejadianpneumoniabalitadijawatimurtahun2014
AT ariefwibowo principalcomponentanalysispcauntukmengatasimultikolinieritasterhadapfaktorangkakejadianpneumoniabalitadijawatimurtahun2014
_version_ 1721408091079049216