Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory

Abstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\ri...

Full description

Bibliographic Details
Main Authors: I. L. Buchbinder, E. A. Ivanov, B. S. Merzlikin
Format: Article
Language:English
Published: SpringerOpen 2018-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP09(2018)039
id doaj-b79bb2f6fefb4d199dc58034e0c3a051
record_format Article
spelling doaj-b79bb2f6fefb4d199dc58034e0c3a0512020-11-25T01:58:49ZengSpringerOpenJournal of High Energy Physics1029-84792018-09-012018911510.1007/JHEP09(2018)039Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theoryI. L. Buchbinder0E. A. Ivanov1B. S. Merzlikin2Department of Theoretical Physics, Tomsk State Pedagogical UniversityBogoliubov Laboratory of Theoretical Physics, JINRDepartment of Theoretical Physics, Tomsk State Pedagogical UniversityAbstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\right) $$ gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=10 $$ \mathcal{N}=\left(1,0\right) $$ supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2 $$ \sim \frac{F^2}{X^2} $$ , where F 4 is a monomial of the fourth degree in an abelian field strength F M N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff.http://link.springer.com/article/10.1007/JHEP09(2018)039Extended SupersymmetrySuperspacesSupersymmetric Gauge Theory
collection DOAJ
language English
format Article
sources DOAJ
author I. L. Buchbinder
E. A. Ivanov
B. S. Merzlikin
spellingShingle I. L. Buchbinder
E. A. Ivanov
B. S. Merzlikin
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
Journal of High Energy Physics
Extended Supersymmetry
Superspaces
Supersymmetric Gauge Theory
author_facet I. L. Buchbinder
E. A. Ivanov
B. S. Merzlikin
author_sort I. L. Buchbinder
title Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
title_short Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
title_full Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
title_fullStr Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
title_full_unstemmed Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
title_sort leading low-energy effective action in 6d, n=11 $$ \mathcal{n}=\left(1,1\right) $$ sym theory
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2018-09-01
description Abstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\right) $$ gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=10 $$ \mathcal{N}=\left(1,0\right) $$ supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2 $$ \sim \frac{F^2}{X^2} $$ , where F 4 is a monomial of the fourth degree in an abelian field strength F M N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff.
topic Extended Supersymmetry
Superspaces
Supersymmetric Gauge Theory
url http://link.springer.com/article/10.1007/JHEP09(2018)039
work_keys_str_mv AT ilbuchbinder leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory
AT eaivanov leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory
AT bsmerzlikin leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory
_version_ 1724967962754940928