Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory
Abstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\ri...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-09-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP09(2018)039 |
id |
doaj-b79bb2f6fefb4d199dc58034e0c3a051 |
---|---|
record_format |
Article |
spelling |
doaj-b79bb2f6fefb4d199dc58034e0c3a0512020-11-25T01:58:49ZengSpringerOpenJournal of High Energy Physics1029-84792018-09-012018911510.1007/JHEP09(2018)039Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theoryI. L. Buchbinder0E. A. Ivanov1B. S. Merzlikin2Department of Theoretical Physics, Tomsk State Pedagogical UniversityBogoliubov Laboratory of Theoretical Physics, JINRDepartment of Theoretical Physics, Tomsk State Pedagogical UniversityAbstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\right) $$ gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=10 $$ \mathcal{N}=\left(1,0\right) $$ supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2 $$ \sim \frac{F^2}{X^2} $$ , where F 4 is a monomial of the fourth degree in an abelian field strength F M N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff.http://link.springer.com/article/10.1007/JHEP09(2018)039Extended SupersymmetrySuperspacesSupersymmetric Gauge Theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
I. L. Buchbinder E. A. Ivanov B. S. Merzlikin |
spellingShingle |
I. L. Buchbinder E. A. Ivanov B. S. Merzlikin Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory Journal of High Energy Physics Extended Supersymmetry Superspaces Supersymmetric Gauge Theory |
author_facet |
I. L. Buchbinder E. A. Ivanov B. S. Merzlikin |
author_sort |
I. L. Buchbinder |
title |
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory |
title_short |
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory |
title_full |
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory |
title_fullStr |
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory |
title_full_unstemmed |
Leading low-energy effective action in 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ SYM theory |
title_sort |
leading low-energy effective action in 6d, n=11 $$ \mathcal{n}=\left(1,1\right) $$ sym theory |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2018-09-01 |
description |
Abstract We elaborate on the low-energy effective action of 6D, N=11 $$ \mathcal{N}=\left(1,1\right) $$ supersymmetric Yang-Mills (SYM) theory in the N=10 $$ \mathcal{N}=\left(1,0\right) $$ harmonic superspace formulation. The theory is described in terms of analytic N=10 $$ \mathcal{N}=\left(1,0\right) $$ gauge superfield V ++ and analytic ω-hypermultiplet, both in the adjoint representation of gauge group. The effective action is defined in the framework of the background superfield method ensuring the manifest gauge invariance along with manifest N=10 $$ \mathcal{N}=\left(1,0\right) $$ supersymmetry. We calculate leading contribution to the one-loop effective action using the on-shell background superfields corresponding to the option when gauge group SU(N) is broken to SU(N − 1) × ϒ(1) ⊂ SU(N). In the bosonic sector the effective action involves the structure ∼F2X2 $$ \sim \frac{F^2}{X^2} $$ , where F 4 is a monomial of the fourth degree in an abelian field strength F M N and X stands for the scalar fields from the ω-hypermultiplet. It is manifestly demonstrated that the expectation values of the hypermultiplet scalar fields play the role of a natural infrared cutoff. |
topic |
Extended Supersymmetry Superspaces Supersymmetric Gauge Theory |
url |
http://link.springer.com/article/10.1007/JHEP09(2018)039 |
work_keys_str_mv |
AT ilbuchbinder leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory AT eaivanov leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory AT bsmerzlikin leadinglowenergyeffectiveactionin6dn11mathcalnleft11rightsymtheory |
_version_ |
1724967962754940928 |