Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI

Abstract Background Understanding the irradiated area and dose correctly is important for the reirradiation of organs that deform after irradiation, such as the liver. We investigated the spatial registration error using the deformable image registration (DIR) software products MIM Maestro (MIM) and...

Full description

Bibliographic Details
Main Authors: Nobuyoshi Fukumitsu, Kazunori Nitta, Toshiyuki Terunuma, Toshiyuki Okumura, Haruko Numajiri, Yoshiko Oshiro, Kayoko Ohnishi, Masashi Mizumoto, Teruhito Aihara, Hitoshi Ishikawa, Koji Tsuboi, Hideyuki Sakurai
Format: Article
Language:English
Published: BMC 2017-05-01
Series:BMC Medical Imaging
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12880-017-0202-z
Description
Summary:Abstract Background Understanding the irradiated area and dose correctly is important for the reirradiation of organs that deform after irradiation, such as the liver. We investigated the spatial registration error using the deformable image registration (DIR) software products MIM Maestro (MIM) and Velocity AI (Velocity). Methods Image registration of pretreatment computed tomography (CT) and posttreatment CT was performed in 24 patients with liver tumors. All the patients received proton beam therapy, and the follow-up period was 4–14 (median: 10) months. We performed DIR of the pretreatment CT and compared it with that of the posttreatment CT by calculating the dislocation of metallic markers (implanted close to the tumors). Results The fiducial registration error was comparable in both products: 0.4–32.9 (9.3 ± 9.9) mm for MIM and 0.5–38.6 (11.0 ± 10.0) mm for Velocity, and correlated with the tumor diameter for MIM (r = 0.69, P = 0.002) and for Velocity (r = 0.68, P = 0.0003). Regarding the enhancement effect, the fiducial registration error was 1.0–24.9 (7.4 ± 7.7) mm for MIM and 0.3–29.6 (8.9 ± 7.2) mm for Velocity, which is shorter than that of plain CT (P = 0.04, for both). Conclusions The DIR performance of both MIM and Velocity is comparable with regard to the liver. The fiducial registration error of DIR depends on the tumor diameter. Furthermore, contrast-enhanced CT improves the accuracy of both MIM and Velocity. Institutional review board approval H28-102; July 14, 2016 approved.
ISSN:1471-2342