IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN
This paper studies the implementation of Markov Chain Monte Carlo on estimating the hyperparameter of Gaussian process. Metropolish-Hasting (MH) algorithm is used to generate the random samples from the posterior distribution that can not be generated by a direct simulation method. This algorithm re...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Diponegoro
2011-06-01
|
Series: | Media Statistika |
Online Access: | https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2503 |
id |
doaj-b77363ef439442daac2bbd04fa02c4f8 |
---|---|
record_format |
Article |
spelling |
doaj-b77363ef439442daac2bbd04fa02c4f82020-11-25T02:48:38ZengUniversitas DiponegoroMedia Statistika1979-36932477-06472011-06-014111010.14710/medstat.4.1.1-102164IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIANMoch. Abdul MukidSugito SugitoThis paper studies the implementation of Markov Chain Monte Carlo on estimating the hyperparameter of Gaussian process. Metropolish-Hasting (MH) algorithm is used to generate the random samples from the posterior distribution that can not be generated by a direct simulation method. This algorithm require only a proposal distribution for generating a candidate point. In this paper uniform distribution is choosen as the proposal distribution. Keywords: Markov Chain Monte Carlo, Gaussian Process, Metropolis-Hasting Algorithmhttps://ejournal.undip.ac.id/index.php/media_statistika/article/view/2503 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Moch. Abdul Mukid Sugito Sugito |
spellingShingle |
Moch. Abdul Mukid Sugito Sugito IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN Media Statistika |
author_facet |
Moch. Abdul Mukid Sugito Sugito |
author_sort |
Moch. Abdul Mukid |
title |
IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN |
title_short |
IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN |
title_full |
IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN |
title_fullStr |
IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN |
title_full_unstemmed |
IMPLEMENTASI MARKOV CHAIN MONTE CARLO PADA PENDUGAAN HYPERPARAMETER REGRESI PROSES GAUSSIAN |
title_sort |
implementasi markov chain monte carlo pada pendugaan hyperparameter regresi proses gaussian |
publisher |
Universitas Diponegoro |
series |
Media Statistika |
issn |
1979-3693 2477-0647 |
publishDate |
2011-06-01 |
description |
This paper studies the implementation of Markov Chain Monte Carlo on estimating the hyperparameter of Gaussian process. Metropolish-Hasting (MH) algorithm is used to generate the random samples from the posterior distribution that can not be generated by a direct simulation method. This algorithm require only a proposal distribution for generating a candidate point. In this paper uniform distribution is choosen as the proposal distribution.
Keywords: Markov Chain Monte Carlo, Gaussian Process, Metropolis-Hasting Algorithm |
url |
https://ejournal.undip.ac.id/index.php/media_statistika/article/view/2503 |
work_keys_str_mv |
AT mochabdulmukid implementasimarkovchainmontecarlopadapendugaanhyperparameterregresiprosesgaussian AT sugitosugito implementasimarkovchainmontecarlopadapendugaanhyperparameterregresiprosesgaussian |
_version_ |
1724747340675284992 |