Bootstrap inversion for Pn wave velocity in North-Western Italy
An inversion of Pn arrival times from regional distance earthquakes (180-800 km), recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Istituto Nazionale di Geofisica e Vulcanologia (INGV)
1997-06-01
|
Series: | Annals of Geophysics |
Subjects: | |
Online Access: | http://www.annalsofgeophysics.eu/index.php/annals/article/view/3941 |
id |
doaj-b770bc15992e4d1d9384d103a4a365fc |
---|---|
record_format |
Article |
spelling |
doaj-b770bc15992e4d1d9384d103a4a365fc2020-11-25T00:39:14ZengIstituto Nazionale di Geofisica e Vulcanologia (INGV)Annals of Geophysics1593-52132037-416X1997-06-0140110.4401/ag-3941Bootstrap inversion for Pn wave velocity in North-Western ItalyC. EvaD. SpallarossaS. ParolaiAn inversion of Pn arrival times from regional distance earthquakes (180-800 km), recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6%) and the Western Po plain (-4%) in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4%) indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3%) and low Pn velocities (-1.5%) in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles.http://www.annalsofgeophysics.eu/index.php/annals/article/view/3941Pn wavetomographybootstrapItaly |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Eva D. Spallarossa S. Parolai |
spellingShingle |
C. Eva D. Spallarossa S. Parolai Bootstrap inversion for Pn wave velocity in North-Western Italy Annals of Geophysics Pn wave tomography bootstrap Italy |
author_facet |
C. Eva D. Spallarossa S. Parolai |
author_sort |
C. Eva |
title |
Bootstrap inversion for Pn wave velocity in North-Western Italy |
title_short |
Bootstrap inversion for Pn wave velocity in North-Western Italy |
title_full |
Bootstrap inversion for Pn wave velocity in North-Western Italy |
title_fullStr |
Bootstrap inversion for Pn wave velocity in North-Western Italy |
title_full_unstemmed |
Bootstrap inversion for Pn wave velocity in North-Western Italy |
title_sort |
bootstrap inversion for pn wave velocity in north-western italy |
publisher |
Istituto Nazionale di Geofisica e Vulcanologia (INGV) |
series |
Annals of Geophysics |
issn |
1593-5213 2037-416X |
publishDate |
1997-06-01 |
description |
An inversion of Pn arrival times from regional distance earthquakes (180-800 km), recorded by 94 seismic stations operating in North-Western Italy and surrounding areas, was carried out to image lateral variations of P-wave velocity at the crust-mantle boundary, and to estimate the static delay time at each station. The reliability of the obtained results was assessed using both synthetic tests and the bootstrap Monte Carlo resampling technique. Numerical simulations demonstrated the existence of a trade-off between cell velocities and estimated station delay times along the edge of the model. Bootstrap inversions were carried out to determine the standard deviation of velocities and time terms. Low Pn velocity anomalies are detected beneath the outer side of the Alps (-6%) and the Western Po plain (-4%) in correspondence with two regions of strong crustal thickening and negative Bouguer anomaly. In contrast, high Pn velocities are imaged beneath the inner side of the Alps (+4%) indicating the presence of high velocity and density lower crust-upper mantle. The Ligurian sea shows high Pn velocities close to the Ligurian coastlines (+3%) and low Pn velocities (-1.5%) in the middle of the basin in agreement with the upper mantle velocity structure revealed by seismic refraction profiles. |
topic |
Pn wave tomography bootstrap Italy |
url |
http://www.annalsofgeophysics.eu/index.php/annals/article/view/3941 |
work_keys_str_mv |
AT ceva bootstrapinversionforpnwavevelocityinnorthwesternitaly AT dspallarossa bootstrapinversionforpnwavevelocityinnorthwesternitaly AT sparolai bootstrapinversionforpnwavevelocityinnorthwesternitaly |
_version_ |
1725294475778981888 |