Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator

The aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem {-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|...

Full description

Bibliographic Details
Main Authors: Ahmed Ahmed, Vall Mohamed Saad Bouh Elemine
Format: Article
Language:English
Published: De Gruyter 2020-12-01
Series:Nonautonomous Dynamical Systems
Subjects:
Online Access:https://doi.org/10.1515/msds-2020-0118
id doaj-b76297a772c243908e0bb3d39a5b0828
record_format Article
spelling doaj-b76297a772c243908e0bb3d39a5b08282021-09-06T19:20:24ZengDe GruyterNonautonomous Dynamical Systems2353-06262020-12-017122423610.1515/msds-2020-0118msds-2020-0118Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operatorAhmed Ahmed0Vall Mohamed Saad Bouh Elemine1University of Nouakchott Al Aasriya, Faculty of Science and Technology Mathematics and Computer Sciences Department Research Unit Geometry, Topology, PDE and ApplicationsUniversity of Nouakchott Al Aasriya, Faculty of Science and Technology Mathematics and Computer Sciences Department Research Unit Geometry, Topology, PDE and ApplicationsThe aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem {-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|}^{{p_0}\left( x \right) - 2}}u = \lambda f\left( {x,u} \right)} \hfill & {in} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{{\left| {{{\partial u} \over {\partial {x_i}}}} \right|}^{{p_i}\left( x \right) - 2}}{{\partial u} \over {\partial {x_i}}}{\gamma _i} = 0} } \hfill & {on} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces W1,p→(⋅)(Ω)\vec p\left( \cdot \right)\left( \Omega \right) where λ > 0 and f (x, t) = |t|q(x)−2t − |t|s(x)−2t, x ∈ Ω, t ∈ 𝕉 and q(·), s(⋅)∈𝒞+(Ω¯)s\left( \cdot \right) \in {\mathcal{C}_ + }\left( {\bar \Omega } \right).https://doi.org/10.1515/msds-2020-0118p→(x)-laplacian operatorneumann elliptic equationsvariational principlecritical point theoryanisotropic sobolev spaces with variable exponents35j5735d3035j2035j6034b1535a15
collection DOAJ
language English
format Article
sources DOAJ
author Ahmed Ahmed
Vall Mohamed Saad Bouh Elemine
spellingShingle Ahmed Ahmed
Vall Mohamed Saad Bouh Elemine
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
Nonautonomous Dynamical Systems
p→(x)-laplacian operator
neumann elliptic equations
variational principle
critical point theory
anisotropic sobolev spaces with variable exponents
35j57
35d30
35j20
35j60
34b15
35a15
author_facet Ahmed Ahmed
Vall Mohamed Saad Bouh Elemine
author_sort Ahmed Ahmed
title Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
title_short Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
title_full Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
title_fullStr Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
title_full_unstemmed Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
title_sort three weak solutions for a neumann elliptic equations involving the p→(x)\vec p\left( x \right)-laplacian operator
publisher De Gruyter
series Nonautonomous Dynamical Systems
issn 2353-0626
publishDate 2020-12-01
description The aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem {-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|}^{{p_0}\left( x \right) - 2}}u = \lambda f\left( {x,u} \right)} \hfill & {in} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{{\left| {{{\partial u} \over {\partial {x_i}}}} \right|}^{{p_i}\left( x \right) - 2}}{{\partial u} \over {\partial {x_i}}}{\gamma _i} = 0} } \hfill & {on} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces W1,p→(⋅)(Ω)\vec p\left( \cdot \right)\left( \Omega \right) where λ > 0 and f (x, t) = |t|q(x)−2t − |t|s(x)−2t, x ∈ Ω, t ∈ 𝕉 and q(·), s(⋅)∈𝒞+(Ω¯)s\left( \cdot \right) \in {\mathcal{C}_ + }\left( {\bar \Omega } \right).
topic p→(x)-laplacian operator
neumann elliptic equations
variational principle
critical point theory
anisotropic sobolev spaces with variable exponents
35j57
35d30
35j20
35j60
34b15
35a15
url https://doi.org/10.1515/msds-2020-0118
work_keys_str_mv AT ahmedahmed threeweaksolutionsforaneumannellipticequationsinvolvingthepxvecpleftxrightlaplacianoperator
AT vallmohamedsaadbouhelemine threeweaksolutionsforaneumannellipticequationsinvolvingthepxvecpleftxrightlaplacianoperator
_version_ 1717776988023816192