Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator
The aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem {-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-12-01
|
Series: | Nonautonomous Dynamical Systems |
Subjects: | |
Online Access: | https://doi.org/10.1515/msds-2020-0118 |
id |
doaj-b76297a772c243908e0bb3d39a5b0828 |
---|---|
record_format |
Article |
spelling |
doaj-b76297a772c243908e0bb3d39a5b08282021-09-06T19:20:24ZengDe GruyterNonautonomous Dynamical Systems2353-06262020-12-017122423610.1515/msds-2020-0118msds-2020-0118Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operatorAhmed Ahmed0Vall Mohamed Saad Bouh Elemine1University of Nouakchott Al Aasriya, Faculty of Science and Technology Mathematics and Computer Sciences Department Research Unit Geometry, Topology, PDE and ApplicationsUniversity of Nouakchott Al Aasriya, Faculty of Science and Technology Mathematics and Computer Sciences Department Research Unit Geometry, Topology, PDE and ApplicationsThe aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem {-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|}^{{p_0}\left( x \right) - 2}}u = \lambda f\left( {x,u} \right)} \hfill & {in} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{{\left| {{{\partial u} \over {\partial {x_i}}}} \right|}^{{p_i}\left( x \right) - 2}}{{\partial u} \over {\partial {x_i}}}{\gamma _i} = 0} } \hfill & {on} \hfill & {\partial \Omega ,} \hfill \cr } } \right. in the anisotropic variable exponent Sobolev spaces W1,p→(⋅)(Ω)\vec p\left( \cdot \right)\left( \Omega \right) where λ > 0 and f (x, t) = |t|q(x)−2t − |t|s(x)−2t, x ∈ Ω, t ∈ and q(·), s(⋅)∈𝒞+(Ω¯)s\left( \cdot \right) \in {\mathcal{C}_ + }\left( {\bar \Omega } \right).https://doi.org/10.1515/msds-2020-0118p→(x)-laplacian operatorneumann elliptic equationsvariational principlecritical point theoryanisotropic sobolev spaces with variable exponents35j5735d3035j2035j6034b1535a15 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ahmed Ahmed Vall Mohamed Saad Bouh Elemine |
spellingShingle |
Ahmed Ahmed Vall Mohamed Saad Bouh Elemine Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator Nonautonomous Dynamical Systems p→(x)-laplacian operator neumann elliptic equations variational principle critical point theory anisotropic sobolev spaces with variable exponents 35j57 35d30 35j20 35j60 34b15 35a15 |
author_facet |
Ahmed Ahmed Vall Mohamed Saad Bouh Elemine |
author_sort |
Ahmed Ahmed |
title |
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator |
title_short |
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator |
title_full |
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator |
title_fullStr |
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator |
title_full_unstemmed |
Three weak solutions for a Neumann elliptic equations involving the p→(x)\vec p\left( x \right)-Laplacian operator |
title_sort |
three weak solutions for a neumann elliptic equations involving the p→(x)\vec p\left( x \right)-laplacian operator |
publisher |
De Gruyter |
series |
Nonautonomous Dynamical Systems |
issn |
2353-0626 |
publishDate |
2020-12-01 |
description |
The aim of this paper is to establish the existence of at least three weak solutions for the following elliptic Neumann problem
{-Δp→(x)u+α(x)|u|p0(x)-2u=λf(x,u)inΩ,∑i=1N|∂u∂xi|pi(x)-2∂u∂xiγi=0on∂Ω,\left\{ {\matrix{ { - {\Delta _{\vec p\left( x \right)}}u + \alpha \left( x \right){{\left| u \right|}^{{p_0}\left( x \right) - 2}}u = \lambda f\left( {x,u} \right)} \hfill & {in} \hfill & {\Omega ,} \hfill \cr {\sum\limits_{i = 1}^N {{{\left| {{{\partial u} \over {\partial {x_i}}}} \right|}^{{p_i}\left( x \right) - 2}}{{\partial u} \over {\partial {x_i}}}{\gamma _i} = 0} } \hfill & {on} \hfill & {\partial \Omega ,} \hfill \cr } } \right.
in the anisotropic variable exponent Sobolev spaces W1,p→(⋅)(Ω)\vec p\left( \cdot \right)\left( \Omega \right) where λ > 0 and f (x, t) = |t|q(x)−2t − |t|s(x)−2t, x ∈ Ω, t ∈ and q(·), s(⋅)∈𝒞+(Ω¯)s\left( \cdot \right) \in {\mathcal{C}_ + }\left( {\bar \Omega } \right). |
topic |
p→(x)-laplacian operator neumann elliptic equations variational principle critical point theory anisotropic sobolev spaces with variable exponents 35j57 35d30 35j20 35j60 34b15 35a15 |
url |
https://doi.org/10.1515/msds-2020-0118 |
work_keys_str_mv |
AT ahmedahmed threeweaksolutionsforaneumannellipticequationsinvolvingthepxvecpleftxrightlaplacianoperator AT vallmohamedsaadbouhelemine threeweaksolutionsforaneumannellipticequationsinvolvingthepxvecpleftxrightlaplacianoperator |
_version_ |
1717776988023816192 |