Hypermethylation and post-transcriptional regulation of DNA methyltransferases in the ovarian carcinomas of the laying hen.

DNA methyltransferases (DNMTs) are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation e...

Full description

Bibliographic Details
Main Authors: Jin-Young Lee, Wooyoung Jeong, Whasun Lim, Chul-Hong Lim, Seung-Min Bae, Jinyoung Kim, Fuller W Bazer, Gwonhwa Song
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2013-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3629126?pdf=render
Description
Summary:DNA methyltransferases (DNMTs) are key regulators of DNA methylation and have crucial roles in carcinogenesis, embryogenesis and epigenetic modification. In general, DNMT1 has enzymatic activity affecting maintenance of DNA methylation, whereas DNMT3A and DNMT3B are involved in de novo methylation events. Although DNMT genes are well known in mammals including humans and mice, they are not well studied in avian species, especially the laying hen which is recognized as an excellent animal model for research on human ovarian carcinogenesis. Results of the present study demonstrated that expression of DNMT1, DNMT3A and DNMT3B genes was significantly increased, particularly in the glandular epithelia (GE) of cancerous ovaries, but not normal ovaries. Consistent with this result, immunoreactive 5-methylcytosine protein was predominantly abundant in nuclei of stromal and GE cells of cancerous ovaries, but it was also found that, to a lesser extent, in nuclei of stromal cells of normal ovaries. Methylation-specific PCR analysis detected hypermethylation of the promoter regions of the tumor suppressor genes in the initiation and development of chicken ovarian cancer. Further, several microRNAs, specifically miR-1741, miR-16c, and miR-222, and miR-1632 were discovered to influence expression of DNMT3A and DNMT3B, respectively, via their 3'-UTR which suggests post-transcriptional regulation of their expression in laying hens. Collectively, results of the present study demonstrated increased expression of DNMT genes in cancerous ovaries of laying hens and post-transcriptional regulation of those genes by specific microRNAs, as well as control of hypermethylation of the promoters of tumor suppressor genes.
ISSN:1932-6203