On Integral Operators with Operator-Valued Kernels
<p/> <p>Here, we study the continuity of integral operators with operator-valued kernels. Particularly we get <inline-formula> <graphic file="1029-242X-2010-850125-i1.gif"/></inline-formula> estimates under some natural conditions on the kernel <inline-form...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/850125 |
id |
doaj-b75c19cc7e32494e92e120c54758fd34 |
---|---|
record_format |
Article |
spelling |
doaj-b75c19cc7e32494e92e120c54758fd342020-11-24T22:00:26ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2010-01-0120101850125On Integral Operators with Operator-Valued KernelsShahmurov Rishad<p/> <p>Here, we study the continuity of integral operators with operator-valued kernels. Particularly we get <inline-formula> <graphic file="1029-242X-2010-850125-i1.gif"/></inline-formula> estimates under some natural conditions on the kernel <inline-formula> <graphic file="1029-242X-2010-850125-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-850125-i3.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i4.gif"/></inline-formula> are Banach spaces, and <inline-formula> <graphic file="1029-242X-2010-850125-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i6.gif"/></inline-formula> are positive measure spaces: Then, we apply these results to extend the well-known Fourier Multiplier theorems on Besov spaces.</p>http://www.journalofinequalitiesandapplications.com/content/2010/850125 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Shahmurov Rishad |
spellingShingle |
Shahmurov Rishad On Integral Operators with Operator-Valued Kernels Journal of Inequalities and Applications |
author_facet |
Shahmurov Rishad |
author_sort |
Shahmurov Rishad |
title |
On Integral Operators with Operator-Valued Kernels |
title_short |
On Integral Operators with Operator-Valued Kernels |
title_full |
On Integral Operators with Operator-Valued Kernels |
title_fullStr |
On Integral Operators with Operator-Valued Kernels |
title_full_unstemmed |
On Integral Operators with Operator-Valued Kernels |
title_sort |
on integral operators with operator-valued kernels |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2010-01-01 |
description |
<p/> <p>Here, we study the continuity of integral operators with operator-valued kernels. Particularly we get <inline-formula> <graphic file="1029-242X-2010-850125-i1.gif"/></inline-formula> estimates under some natural conditions on the kernel <inline-formula> <graphic file="1029-242X-2010-850125-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-850125-i3.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i4.gif"/></inline-formula> are Banach spaces, and <inline-formula> <graphic file="1029-242X-2010-850125-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i6.gif"/></inline-formula> are positive measure spaces: Then, we apply these results to extend the well-known Fourier Multiplier theorems on Besov spaces.</p> |
url |
http://www.journalofinequalitiesandapplications.com/content/2010/850125 |
work_keys_str_mv |
AT shahmurovrishad onintegraloperatorswithoperatorvaluedkernels |
_version_ |
1725844465143250944 |