On Integral Operators with Operator-Valued Kernels
<p/> <p>Here, we study the continuity of integral operators with operator-valued kernels. Particularly we get <inline-formula> <graphic file="1029-242X-2010-850125-i1.gif"/></inline-formula> estimates under some natural conditions on the kernel <inline-form...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2010-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://www.journalofinequalitiesandapplications.com/content/2010/850125 |
Summary: | <p/> <p>Here, we study the continuity of integral operators with operator-valued kernels. Particularly we get <inline-formula> <graphic file="1029-242X-2010-850125-i1.gif"/></inline-formula> estimates under some natural conditions on the kernel <inline-formula> <graphic file="1029-242X-2010-850125-i2.gif"/></inline-formula>, where <inline-formula> <graphic file="1029-242X-2010-850125-i3.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i4.gif"/></inline-formula> are Banach spaces, and <inline-formula> <graphic file="1029-242X-2010-850125-i5.gif"/></inline-formula> and <inline-formula> <graphic file="1029-242X-2010-850125-i6.gif"/></inline-formula> are positive measure spaces: Then, we apply these results to extend the well-known Fourier Multiplier theorems on Besov spaces.</p> |
---|---|
ISSN: | 1025-5834 1029-242X |