Positive solutions and global bifurcation of strongly coupled elliptic systems

In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain condi...

Full description

Bibliographic Details
Main Author: Jagmohan Tyagi
Format: Article
Language:English
Published: Texas State University 2013-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html
id doaj-b755169c2edb40b08b63f912ef318ad1
record_format Article
spelling doaj-b755169c2edb40b08b63f912ef318ad12020-11-24T20:42:59ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912013-03-01201382,111Positive solutions and global bifurcation of strongly coupled elliptic systemsJagmohan TyagiIn this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system. http://ejde.math.txstate.edu/Volumes/2013/82/abstr.htmlElliptic systembifurcationpositive solutions
collection DOAJ
language English
format Article
sources DOAJ
author Jagmohan Tyagi
spellingShingle Jagmohan Tyagi
Positive solutions and global bifurcation of strongly coupled elliptic systems
Electronic Journal of Differential Equations
Elliptic system
bifurcation
positive solutions
author_facet Jagmohan Tyagi
author_sort Jagmohan Tyagi
title Positive solutions and global bifurcation of strongly coupled elliptic systems
title_short Positive solutions and global bifurcation of strongly coupled elliptic systems
title_full Positive solutions and global bifurcation of strongly coupled elliptic systems
title_fullStr Positive solutions and global bifurcation of strongly coupled elliptic systems
title_full_unstemmed Positive solutions and global bifurcation of strongly coupled elliptic systems
title_sort positive solutions and global bifurcation of strongly coupled elliptic systems
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2013-03-01
description In this article, we study the existence of positive solutions for the coupled elliptic system egin{gather*} -Delta u= lambda (f(u, v)+ h_{1}(x) ) quad ext{in }Omega, \ -Delta v= lambda (g(u, v)+ h_{2}(x))quad ext{in }Omega, \ u =v=0 quad ext{on }partial Omega, end{gather*} under certain conditions on $f,g$ and allowing $h_1, h_2$ to be singular. We also consider the system egin{gather*} -Delta u= lambda ( a(x) u + b(x)v+ f_{1}(v)+ f_{2}(u) ) quad ext{in }Ome ga, \ -Delta v= lambda ( b(x)u+ c(x)v+ g_{1}(u)+ g_{2}(v) )quad ext{in }Omega , \ u =v=0 quad ext{on }partial Omega, end{gather*} and prove a Rabinowitz global bifurcation type theorem to this system.
topic Elliptic system
bifurcation
positive solutions
url http://ejde.math.txstate.edu/Volumes/2013/82/abstr.html
work_keys_str_mv AT jagmohantyagi positivesolutionsandglobalbifurcationofstronglycoupledellipticsystems
_version_ 1716821023479824384