EH-UWSN: Improved Cooperative Routing Scheme for UWSNs Using Energy Harvesting

The harsh testing environments of underwater scenarios make it extremely hard to plan a reasonable routing protocol for Underwater Sensor Networks (UWSNs). The main challenge in UWSNs is energy confinement. It is needed to plan an energy effective scheme which increases the life span of the network...

Full description

Bibliographic Details
Main Authors: Sheeraz Ahmed, Malik Taimur Ali, Asma A. Alothman, Asif Nawaz, M. Shahzad, Ahmed Ali Shah, Awais Ahmad, M. Yousaf Ali Khan, Zeeshan Najam, Asma Shaheen
Format: Article
Language:English
Published: Hindawi Limited 2020-01-01
Series:Journal of Sensors
Online Access:http://dx.doi.org/10.1155/2020/8888957
Description
Summary:The harsh testing environments of underwater scenarios make it extremely hard to plan a reasonable routing protocol for Underwater Sensor Networks (UWSNs). The main challenge in UWSNs is energy confinement. It is needed to plan an energy effective scheme which increases the life span of the network and also reduces the energy usage in data transfer from supplier to sink. In this research, we present the design of a routing protocol known as Energy Harvesting in UWSN (EH-UWSN). EH-UWSN is a compact, energy efficient, and high throughput routing protocol, in which we present utilization of energy gaining with coordinating transfer of data packets through relay nodes. Through Energy Harvesting, the nodes are capable to recharge their batteries from the outside surrounding with the ultimate objective to improve the time span of network and proceed data through cooperation, along with restricting energy usage. At the sink node, the mixing plan applied is centered on Signal-to-Noise Ratio Combination (SNRC). Outcomes of EH-UWSN procedure reveal good results in terms of usage of energy, throughput, and network life span in comparing with our previous Cooperative Routing Scheme for UWSNs (Co-UWSN). Simulation results show that EH-UWSN has consumed considerably lesser energy when compared with Co-UWSN along with extending network lifetime and higher throughput at the destination.
ISSN:1687-725X
1687-7268