Detecting fluorescent dark matter with X-ray lasers

Abstract Fluorescent dark matter has been suggested as a possible explanation of both the 3.5 keV excess in the diffuse emission of the Perseus Cluster and of the deficit at the same energy in the central active galaxy within that cluster, NGC 1275. In this work we point out that such a dark matter...

Full description

Bibliographic Details
Main Authors: Francesca Day, Malcolm Fairbairn
Format: Article
Language:English
Published: SpringerOpen 2018-06-01
Series:European Physical Journal C: Particles and Fields
Online Access:http://link.springer.com/article/10.1140/epjc/s10052-018-5994-7
Description
Summary:Abstract Fluorescent dark matter has been suggested as a possible explanation of both the 3.5 keV excess in the diffuse emission of the Perseus Cluster and of the deficit at the same energy in the central active galaxy within that cluster, NGC 1275. In this work we point out that such a dark matter candidate can be searched for at the new X-ray laser facilities that are currently being built and starting to operate around the world. We present one possible experimental set up where the laser is passed through a narrow cylinder lined with lead shielding. Fluorescent dark matter would be excited upon interaction with the laser photons and travel across the lead shielding to decay outside the cylinder, in a region which has been instrumented with X-ray detectors. For an instrumented length of 7 cm at the LCLS-II laser we expect $$\mathcal {O}$$ O (1–10) such events per week for parameters which explain the astronomical observations.
ISSN:1434-6044
1434-6052