Entire functions related to stationary solutions of the Kawahara equation

In this study, we characterize the lengths of intervals for which the linear Kawahara equation has a non-trivial solution, whose energy is stationary. This gives rise to a family of complex functions. Characterizing the lengths amounts to deciding which members of this family are entire functio...

Full description

Bibliographic Details
Main Authors: Andre Luiz C. dos Santos, Patricia N. da Silva, Carlos Frederico Vasconcellos
Format: Article
Language:English
Published: Texas State University 2016-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/43/abstr.html
Description
Summary:In this study, we characterize the lengths of intervals for which the linear Kawahara equation has a non-trivial solution, whose energy is stationary. This gives rise to a family of complex functions. Characterizing the lengths amounts to deciding which members of this family are entire functions. Our approach is essentially based on determining the existence of certain Mobius transformation.
ISSN:1072-6691