Summary: | As one of the most effective approaches in dealing with the energy crisis, combined electricity and natural gas systems have become more and more popular worldwide. To take full advantages of such hybrid energy networks, a proper operation and control method is required. In this paper, a novel approach coordinating combined heating and power generation is proposed. First, state excursion rate, a criterion describing the deviation of system operation, is defined for system state evaluation. Then, thermal energy storage is allocated to provide more and better operation modes for combined generation. By investigating the state excursion rate of hybrid energy systems, the optimal operation mode is chosen through an analytical strategy. Case studies on hybrid energy networks show that all state variables, including voltages in electric systems and pressures in gas networks, are adjusted to follow proper operation constraints by the implementations of the proposed strategy. In addition to providing sufficient auxiliary services for hybrid systems, it is also possible to maintain the economic and energy-efficient benefits of energy supply. This study provides an effective method to utilize the regulation capability of combined heating and power generations, which is a technical basis of energy internet.
|