Estimate of FDG Excretion by means of Compartmental Analysis and Ant Colony Optimization of Nuclear Medicine Data
[18F]fluoro-2-deoxy-D-glucose (FDG) is one of the most utilized tracers for positron emission tomography (PET) applications in oncology. FDG-PET relies on higher glycolytic activity in tumors compared to normal structures as the basis of image contrast. As a glucose analog, FDG is transported into m...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Computational and Mathematical Methods in Medicine |
Online Access: | http://dx.doi.org/10.1155/2013/793142 |
Summary: | [18F]fluoro-2-deoxy-D-glucose (FDG) is one of the most utilized tracers for positron emission tomography (PET) applications in oncology. FDG-PET relies on higher glycolytic activity in tumors compared to normal structures as the basis of image contrast. As a glucose analog, FDG is transported into malignant cells which typically exhibit an increased radioactivity. However, different from glucose, FDG is not reabsorbed by the renal system and is excreted to the
bladder. The present paper describes a novel computational method
for the quantitative assessment of this excretion process. The method is based on a compartmental analysis of FDG-PET data in which the
excretion process is explicitly accounted for by the bladder compartment and on the application of an ant colony optimization (ACO)
algorithm for the determination of the tracer coefficients describing
the FDG transport effectiveness. The validation of this approach is
performed by means of both synthetic data and real measurements
acquired by a PET device for small animals (micro-PET). Possible
oncological applications of the results are discussed in the final section. |
---|---|
ISSN: | 1748-670X 1748-6718 |