Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose.
RATIONALE:Diabetes causes cardiac dysfunction, and understanding of its mechanism is still incomplete. One reason could be limitations in modeling disease conditions by current in vitro cardiomyocyte culture. Emerging evidence suggests that the mechanical properties of the microenvironment affect ca...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6107143?pdf=render |
id |
doaj-b6f154dacbc54602a818cb181d7111c8 |
---|---|
record_format |
Article |
spelling |
doaj-b6f154dacbc54602a818cb181d7111c82020-11-25T02:23:09ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-01138e020189110.1371/journal.pone.0201891Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose.Masaki MorishimaKazuki HorikawaMakoto FunakiRATIONALE:Diabetes causes cardiac dysfunction, and understanding of its mechanism is still incomplete. One reason could be limitations in modeling disease conditions by current in vitro cardiomyocyte culture. Emerging evidence suggests that the mechanical properties of the microenvironment affect cardiomyocyte function. Nevertheless, the impact of high glucose on cardiomyocytes cultured on substrates whose stiffness matches that of the heart (approximately 15 kPa) is untested. OBJECTIVE:To test the hypothesis that cardiomyocytes cultured in microenvironments that mimic the mechanical properties of those for cardiomyocytes in vivo may reproduce the pathophysiology characteristics of diabetic cardiomyocytes ex vivo, such as the morphological appearance, ROS accumulation, mitochondrial dysfunction, apoptosis and insulin-stimulated glucose uptake. METHODS AND RESULTS:Isolated neonatal rat cardiomyocytes were seeded on 15 kPa polyacrylamide (PAA) gels, whose stiffness mimics that of heart tissues, or on glass coverslips, which represent conventional culture devices but are unphysiologically stiff. Cells were then cultured at 5 mM glucose, corresponding to the normal blood glucose level, or at high glucose levels (10 to 25 mM). Cytoskeletal disorganization, ROS accumulation, attenuated mitochondrial membrane potential and attenuated ATP level caused by high glucose and their reversal by a ROS scavenger were prominent in cells on gels, but not in cells on coverslips. The lack of response to ROS scavenging could be attributable to enhanced apoptosis in cells on glass, shown by enhanced DNA fragmentation and higher caspase 3/7 activity in cells on glass coverslips. High-glucose treatment also downregulated GLUT4 expression and attenuated insulin-stimulated glucose uptake only in cells on 15 kPa gels. CONCLUSION:Our data suggest that a mechanically compliant microenvironment increases the susceptibility of primary cardiomyocytes to elevated glucose levels, which enables these cells to serve as an innovative model for diabetic heart research.http://europepmc.org/articles/PMC6107143?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Masaki Morishima Kazuki Horikawa Makoto Funaki |
spellingShingle |
Masaki Morishima Kazuki Horikawa Makoto Funaki Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. PLoS ONE |
author_facet |
Masaki Morishima Kazuki Horikawa Makoto Funaki |
author_sort |
Masaki Morishima |
title |
Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
title_short |
Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
title_full |
Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
title_fullStr |
Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
title_full_unstemmed |
Cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
title_sort |
cardiomyocytes cultured on mechanically compliant substrates, but not on conventional culture devices, exhibit prominent mitochondrial dysfunction due to reactive oxygen species and insulin resistance under high glucose. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
RATIONALE:Diabetes causes cardiac dysfunction, and understanding of its mechanism is still incomplete. One reason could be limitations in modeling disease conditions by current in vitro cardiomyocyte culture. Emerging evidence suggests that the mechanical properties of the microenvironment affect cardiomyocyte function. Nevertheless, the impact of high glucose on cardiomyocytes cultured on substrates whose stiffness matches that of the heart (approximately 15 kPa) is untested. OBJECTIVE:To test the hypothesis that cardiomyocytes cultured in microenvironments that mimic the mechanical properties of those for cardiomyocytes in vivo may reproduce the pathophysiology characteristics of diabetic cardiomyocytes ex vivo, such as the morphological appearance, ROS accumulation, mitochondrial dysfunction, apoptosis and insulin-stimulated glucose uptake. METHODS AND RESULTS:Isolated neonatal rat cardiomyocytes were seeded on 15 kPa polyacrylamide (PAA) gels, whose stiffness mimics that of heart tissues, or on glass coverslips, which represent conventional culture devices but are unphysiologically stiff. Cells were then cultured at 5 mM glucose, corresponding to the normal blood glucose level, or at high glucose levels (10 to 25 mM). Cytoskeletal disorganization, ROS accumulation, attenuated mitochondrial membrane potential and attenuated ATP level caused by high glucose and their reversal by a ROS scavenger were prominent in cells on gels, but not in cells on coverslips. The lack of response to ROS scavenging could be attributable to enhanced apoptosis in cells on glass, shown by enhanced DNA fragmentation and higher caspase 3/7 activity in cells on glass coverslips. High-glucose treatment also downregulated GLUT4 expression and attenuated insulin-stimulated glucose uptake only in cells on 15 kPa gels. CONCLUSION:Our data suggest that a mechanically compliant microenvironment increases the susceptibility of primary cardiomyocytes to elevated glucose levels, which enables these cells to serve as an innovative model for diabetic heart research. |
url |
http://europepmc.org/articles/PMC6107143?pdf=render |
work_keys_str_mv |
AT masakimorishima cardiomyocytesculturedonmechanicallycompliantsubstratesbutnotonconventionalculturedevicesexhibitprominentmitochondrialdysfunctionduetoreactiveoxygenspeciesandinsulinresistanceunderhighglucose AT kazukihorikawa cardiomyocytesculturedonmechanicallycompliantsubstratesbutnotonconventionalculturedevicesexhibitprominentmitochondrialdysfunctionduetoreactiveoxygenspeciesandinsulinresistanceunderhighglucose AT makotofunaki cardiomyocytesculturedonmechanicallycompliantsubstratesbutnotonconventionalculturedevicesexhibitprominentmitochondrialdysfunctionduetoreactiveoxygenspeciesandinsulinresistanceunderhighglucose |
_version_ |
1724859388477308928 |