Summary: | In recent years, 3D printing has received increasing attention from researchers. This technology overcomes the limitations of traditional technologies by printing precise and personalized scaffold with arbitrary shapes, pore structures, and porosities for the applications in various tissues. The cellulose nanocrystal (CNC) is extracted from Humulus Japonicus (HJS) and mixed with poly(ε-caprolactone) (PCL) to prepare a series of CNC/PCL composites for printing. Based on the analysis of the physical and chemical properties of the series of the CNC/PCL composites, an optimal mass ratio of CNC to PCL was obtained. The Solidworks was used to simulate the stretching and compression process of the scaffolds with three different patterns under an external force. The flow of nutrient solution in the scaffolds with different patterns was simulated by ANSYS FLUENT, and then a new optimization scaffold pattern with a concave hexagon shape was advised based on the simulation results. Collectively, the mechanical test results of the material and scaffold confirmed that the optimal filling amount of the CNC was 5%, and the scaffold pattern with concave hexagon shape exhibited better mechanical properties and suitable for the transport of cells and nutrients, which is expected to be more widely used in 3D printing.
|