Implementation of User Cuts and Linear Sensitivity Factors to Improve the Computational Performance of the Security-Constrained Unit Commitment Problem

Power system operators must schedule the available generation resources required to achieve an economical, reliable, and secure energy production in power systems. This is usually achieved by solving a security-constrained unit commitment (SCUC) problem. Through a SCUC the System Operator determines...

Full description

Bibliographic Details
Main Authors: Cristian Camilo Marín-Cano, Juan Esteban Sierra-Aguilar, Jesús M. López-Lezama, Álvaro Jaramillo-Duque, Walter M. Villa-Acevedo
Format: Article
Language:English
Published: MDPI AG 2019-04-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/7/1399
Description
Summary:Power system operators must schedule the available generation resources required to achieve an economical, reliable, and secure energy production in power systems. This is usually achieved by solving a security-constrained unit commitment (SCUC) problem. Through a SCUC the System Operator determines which generation units must be on and off-line over a time horizon of typically 24 h. The SCUC is a challenging problem that features high computational cost due to the amount and nature of the variables involved. This paper presents an alternative formulation to the SCUC problem aimed at reducing its computational cost using sensitivity factors and user cuts. Power Transfer Distribution Factors (PTDF) and Line Outage Distribution Factors (LODF) sensitivity factors allow a fast computation of power flows (in normal operative conditions and under contingencies), while the implementation of user cuts reduces computational burden by considering only biding <i>N-1</i> security constraints. Several tests were performed with the IEEE RTS-96 power system showing the applicability and effectiveness of the proposed modelling approach. It was found that the use of Linear Sensitivity Factors (LSF) together with user cuts as proposed in this paper, reduces the computation time of the SCUC problem up to 97% when compared with its classical formulation. Furthermore, the proposed modelling allows a straightforward identification of the most critical lines in terms of the overloads they produce in other elements after an outage, and the number of times they are overloaded by a fault. Such information is valuable to system planners when deciding future network expansion projects.
ISSN:1996-1073