Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport

This is the second in a series of papers that investigate the semi-annual, annual and Universal Time (UT) variations in the magnetosphere. We present a varied collection of empirical results that can be used to constrain theories and modelling of these variations. An initial study of two years’ data...

Full description

Bibliographic Details
Main Authors: Lockwood Mike, McWilliams Kathryn A., Owens Mathew J., Barnard Luke A., Watt Clare E., Scott Chris J., Macneil Allan R., Coxon John C.
Format: Article
Language:English
Published: EDP Sciences 2020-01-01
Series:Journal of Space Weather and Space Climate
Subjects:
Online Access:https://www.swsc-journal.org/articles/swsc/full_html/2020/01/swsc190052/swsc190052.html
id doaj-b6e002cafbfb45b3a2b900adfc5d3707
record_format Article
spelling doaj-b6e002cafbfb45b3a2b900adfc5d37072021-04-02T19:00:46ZengEDP SciencesJournal of Space Weather and Space Climate2115-72512020-01-01103010.1051/swsc/2020033swsc190052Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transportLockwood Mike0https://orcid.org/0000-0002-7397-2172McWilliams Kathryn A.1Owens Mathew J.2https://orcid.org/0000-0003-2061-2453Barnard Luke A.3https://orcid.org/0000-0001-9876-4612Watt Clare E.4https://orcid.org/0000-0003-3193-8993Scott Chris J.5Macneil Allan R.6https://orcid.org/0000-0003-4802-1209Coxon John C.7https://orcid.org/0000-0002-0166-6854Department of Meteorology, University of ReadingInstitute of Space and Atmospheric Studies, University of SaskatchewanDepartment of Meteorology, University of ReadingDepartment of Meteorology, University of ReadingDepartment of Meteorology, University of ReadingDepartment of Meteorology, University of ReadingDepartment of Meteorology, University of ReadingSchool of Physics and Astronomy, University of SouthamptonThis is the second in a series of papers that investigate the semi-annual, annual and Universal Time (UT) variations in the magnetosphere. We present a varied collection of empirical results that can be used to constrain theories and modelling of these variations. An initial study of two years’ data on transpolar voltage shows that there is a semi-annual variation in magnetospheric flux circulation; however, it is not as large in amplitude as that in geomagnetic activity, consistent with the latter showing a non-linear (quadratic) variation with transpolar voltage. We find that during the persistent minimum of the UT variation in geomagnetic activity, between about 2 and 10 UT, there is also a persistent decrease in observed transpolar voltage, which may be, in part, caused by a decrease in reconnection voltage in the nightside cross-tail current sheet. We study the response of geomagnetic activity to estimated power input into the magnetosphere using interplanetary data from 1995 onwards, an interval for which the data are relatively free of data gaps. We find no consistent variation in the response delay with time-of-year F and, using the optimum lag, we show that the patterns of variation in F-year spectrograms are very similar for geomagnetic activity and power input into the magnetosphere, both for average values and for the occurrence of large events. The Russell–McPherron (R–M) mechanism is shown to be the central driver of this behaviour. However, the (R–M) effect on power input into the magnetosphere is small and there is a non-linear amplification of the semi-annual variation in the geomagnetic response, such that a very small asymmetry in power input into the magnetosphere Pα between the “favourable” and “unfavourable” polarities of the IMF BY component generates a greatly amplified geomagnetic response. The analysis strongly indicates that this amplification is associated with solar wind dynamic pressure and its role in squeezing the near-Earth tail and so modulating the storage and release of energy extracted from the solar wind. In this paper, we show that the equinoctial pattern is found in the residuals of fits of Pα to the am index and that the amplitude of these equinoctial patterns in the am fit residuals increases linearly with solar wind dynamic pressure. Similarly, the UT variation in am is also found in these fit residuals and also increases in amplitude with solar wind dynamic pressure.https://www.swsc-journal.org/articles/swsc/full_html/2020/01/swsc190052/swsc190052.htmlgeomagnetic activitysemi-annual variationsolar wind magnetosphere coupling
collection DOAJ
language English
format Article
sources DOAJ
author Lockwood Mike
McWilliams Kathryn A.
Owens Mathew J.
Barnard Luke A.
Watt Clare E.
Scott Chris J.
Macneil Allan R.
Coxon John C.
spellingShingle Lockwood Mike
McWilliams Kathryn A.
Owens Mathew J.
Barnard Luke A.
Watt Clare E.
Scott Chris J.
Macneil Allan R.
Coxon John C.
Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
Journal of Space Weather and Space Climate
geomagnetic activity
semi-annual variation
solar wind magnetosphere coupling
author_facet Lockwood Mike
McWilliams Kathryn A.
Owens Mathew J.
Barnard Luke A.
Watt Clare E.
Scott Chris J.
Macneil Allan R.
Coxon John C.
author_sort Lockwood Mike
title Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
title_short Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
title_full Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
title_fullStr Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
title_full_unstemmed Semi-annual, annual and Universal Time variations in the magnetosphere and in geomagnetic activity: 2. Response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
title_sort semi-annual, annual and universal time variations in the magnetosphere and in geomagnetic activity: 2. response to solar wind power input and relationships with solar wind dynamic pressure and magnetospheric flux transport
publisher EDP Sciences
series Journal of Space Weather and Space Climate
issn 2115-7251
publishDate 2020-01-01
description This is the second in a series of papers that investigate the semi-annual, annual and Universal Time (UT) variations in the magnetosphere. We present a varied collection of empirical results that can be used to constrain theories and modelling of these variations. An initial study of two years’ data on transpolar voltage shows that there is a semi-annual variation in magnetospheric flux circulation; however, it is not as large in amplitude as that in geomagnetic activity, consistent with the latter showing a non-linear (quadratic) variation with transpolar voltage. We find that during the persistent minimum of the UT variation in geomagnetic activity, between about 2 and 10 UT, there is also a persistent decrease in observed transpolar voltage, which may be, in part, caused by a decrease in reconnection voltage in the nightside cross-tail current sheet. We study the response of geomagnetic activity to estimated power input into the magnetosphere using interplanetary data from 1995 onwards, an interval for which the data are relatively free of data gaps. We find no consistent variation in the response delay with time-of-year F and, using the optimum lag, we show that the patterns of variation in F-year spectrograms are very similar for geomagnetic activity and power input into the magnetosphere, both for average values and for the occurrence of large events. The Russell–McPherron (R–M) mechanism is shown to be the central driver of this behaviour. However, the (R–M) effect on power input into the magnetosphere is small and there is a non-linear amplification of the semi-annual variation in the geomagnetic response, such that a very small asymmetry in power input into the magnetosphere Pα between the “favourable” and “unfavourable” polarities of the IMF BY component generates a greatly amplified geomagnetic response. The analysis strongly indicates that this amplification is associated with solar wind dynamic pressure and its role in squeezing the near-Earth tail and so modulating the storage and release of energy extracted from the solar wind. In this paper, we show that the equinoctial pattern is found in the residuals of fits of Pα to the am index and that the amplitude of these equinoctial patterns in the am fit residuals increases linearly with solar wind dynamic pressure. Similarly, the UT variation in am is also found in these fit residuals and also increases in amplitude with solar wind dynamic pressure.
topic geomagnetic activity
semi-annual variation
solar wind magnetosphere coupling
url https://www.swsc-journal.org/articles/swsc/full_html/2020/01/swsc190052/swsc190052.html
work_keys_str_mv AT lockwoodmike semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT mcwilliamskathryna semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT owensmathewj semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT barnardlukea semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT wattclaree semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT scottchrisj semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT macneilallanr semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
AT coxonjohnc semiannualannualanduniversaltimevariationsinthemagnetosphereandingeomagneticactivity2responsetosolarwindpowerinputandrelationshipswithsolarwinddynamicpressureandmagnetosphericfluxtransport
_version_ 1721550012714844160