Design methodology of a frequency up-converting energy harvester based on dual-cantilever and pendulum structures

Mechanical frequency up-conversion is a technique whereby a high-frequency oscillation is induced from a low-frequency source and aims to address inherent problems in low frequency vibration energy harvesting. This work presents a novel 1:2:6 internal resonances based frequency up-converting harvest...

Full description

Bibliographic Details
Main Authors: Yipeng Wu, Jinhao Qiu, Fumio Kojima, Hongli Ji, Weitai Xie, Shengpeng Zhou
Format: Article
Language:English
Published: AIP Publishing LLC 2019-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.5093361
Description
Summary:Mechanical frequency up-conversion is a technique whereby a high-frequency oscillation is induced from a low-frequency source and aims to address inherent problems in low frequency vibration energy harvesting. This work presents a novel 1:2:6 internal resonances based frequency up-converting harvester in which the operation frequency is 6 times up-converted. Compared to traditional conceptual mechanisms (e.g. mechanical impact, mechanical plucking, impulsive acceleration), the proposed harvester can operate at much lower acceleration level, the missing of sound during the frequency conversion also reduces the energy consumption. Experimental measurements and theoretical simulations demonstrate that the proposed design can collect energy from ultra-low frequency (< 5 Hz) vibration sources. In addition, the harvester shows very high performance compared to the current state-of-the-art devices, a maximum 2.07 mW of average power is obtained from the fabricated prototype at the excitation frequency and level of 1.71 Hz & 0.19 g, respectively.
ISSN:2158-3226