To Make Good Decision: A Group DSS for Multiple Criteria Alternative Rank and Selection

Decision making is a recursive process and usually involves multiple decision criteria. However, such multiple criteria decision making may have a problem in which partial decision criteria may conflict with each other. An information technology, such as the decision support system (DSS) and group D...

Full description

Bibliographic Details
Main Authors: Chen-Shu Wang, Heng-Li Yang, Shiang-Lin Lin
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2015/186970
Description
Summary:Decision making is a recursive process and usually involves multiple decision criteria. However, such multiple criteria decision making may have a problem in which partial decision criteria may conflict with each other. An information technology, such as the decision support system (DSS) and group DSS (GDSS), emerges to assist decision maker for decision-making process. Both the DSS and GDSS should integrate with a symmetrical approach to assist decision maker to take all decision criteria into consideration simultaneously. This study proposes a GDSS architecture named hybrid decision-making support model (HDMSM) and integrated four decision approaches (Delphi, DEMATEL, ANP, and MDS) to help decision maker to rank and select appropriate alternatives. The HDMSM consists of five steps, namely, criteria identification, criteria correlation calculation, criteria evaluation, critical criteria selection, and alternative rank and comparison. Finally, to validate the proposed feasibility of the proposed model, this study also conducts a case study to find out the important indexes of corporate social responsibility (CSR) from multiple perspectives. As the case study demonstrates the proposed HDMSM enables a group of decision makers to implement the MCDM effectively and help them to analyze the relation and degree of mutual influence among different evaluation factors.
ISSN:1024-123X
1563-5147