Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses

Abstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of...

Full description

Bibliographic Details
Main Authors: Juri Fiaschi, Michael Klasen, Simon May
Format: Article
Language:English
Published: SpringerOpen 2019-05-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP05(2019)015
id doaj-b65e5ce721464ce78dd7ba4dfb6d63c2
record_format Article
spelling doaj-b65e5ce721464ce78dd7ba4dfb6d63c22020-11-25T03:02:46ZengSpringerOpenJournal of High Energy Physics1029-84792019-05-012019512410.1007/JHEP05(2019)015Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino massesJuri Fiaschi0Michael Klasen1Simon May2Institut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterInstitut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterInstitut für Theoretische Physik, Westfälische Wilhelms-Universität MünsterAbstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of neutrino masses, which are generated radiatively. This holds even if singlet-doublet fermions and triplet scalars never contribute simultaneously to the dark matter abundance. However, this also implies the existence of lepton flavour violating processes. In addition, this particular model allows for gauge coupling unification. The new fields are odd under a new ℤ2 symmetry to stabilise the dark matter candidate. We analyse the dark matter, neutrino mass and lepton flavour violation aspects both separately and in conjunction, exploring the viable parameter space of the model. This is done using a numerical random scan imposing successively the neutrino mass and mixing, relic density, Higgs mass, direct detection, collider and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above. The narrow mass regions found previously for the two separate models are enlarged by their coupling. While coannihilations of the weak isospin partners are sizeable, this is not the case for fermions and scalars despite their often similar masses due to the relatively small coupling of the two sectors, imposed by the small neutrino masses. We observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.http://link.springer.com/article/10.1007/JHEP05(2019)015Beyond Standard ModelCosmology of Theories beyond the SMNeutrino PhysicsDiscrete Symmetries
collection DOAJ
language English
format Article
sources DOAJ
author Juri Fiaschi
Michael Klasen
Simon May
spellingShingle Juri Fiaschi
Michael Klasen
Simon May
Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
Journal of High Energy Physics
Beyond Standard Model
Cosmology of Theories beyond the SM
Neutrino Physics
Discrete Symmetries
author_facet Juri Fiaschi
Michael Klasen
Simon May
author_sort Juri Fiaschi
title Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
title_short Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
title_full Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
title_fullStr Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
title_full_unstemmed Singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
title_sort singlet-doublet fermion and triplet scalar dark matter with radiative neutrino masses
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2019-05-01
description Abstract We present a detailed study of a combined singlet-doublet fermion and triplet scalar model for dark matter. These models have only been studied separately in the past. Together, they form a simple extension of the Standard Model that can account for dark matter and explain the existence of neutrino masses, which are generated radiatively. This holds even if singlet-doublet fermions and triplet scalars never contribute simultaneously to the dark matter abundance. However, this also implies the existence of lepton flavour violating processes. In addition, this particular model allows for gauge coupling unification. The new fields are odd under a new ℤ2 symmetry to stabilise the dark matter candidate. We analyse the dark matter, neutrino mass and lepton flavour violation aspects both separately and in conjunction, exploring the viable parameter space of the model. This is done using a numerical random scan imposing successively the neutrino mass and mixing, relic density, Higgs mass, direct detection, collider and lepton flavour violation constraints. We find that dark matter in this model is fermionic for masses below about 1 TeV and scalar above. The narrow mass regions found previously for the two separate models are enlarged by their coupling. While coannihilations of the weak isospin partners are sizeable, this is not the case for fermions and scalars despite their often similar masses due to the relatively small coupling of the two sectors, imposed by the small neutrino masses. We observe a high degree of complementarity between direct detection and lepton flavour violation experiments, which should soon allow to fully probe the fermionic dark matter sector and at least partially the scalar dark matter sector.
topic Beyond Standard Model
Cosmology of Theories beyond the SM
Neutrino Physics
Discrete Symmetries
url http://link.springer.com/article/10.1007/JHEP05(2019)015
work_keys_str_mv AT jurifiaschi singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses
AT michaelklasen singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses
AT simonmay singletdoubletfermionandtripletscalardarkmatterwithradiativeneutrinomasses
_version_ 1724688567738826752