TRPS1 drives heterochromatic origin refiring and cancer genome evolution

Summary: Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breas...

Full description

Bibliographic Details
Main Authors: Jianguo Yang, Xiaoping Liu, Yunchao Huang, Lin He, Wenting Zhang, Jie Ren, Yue Wang, Jiajing Wu, Xiaodi Wu, Lin Shan, Xiaohan Yang, Luyang Sun, Jing Liang, Yu Zhang, Yongfeng Shang
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124721001285
Description
Summary:Summary: Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breast carcinogenesis through regulating replication. Epigenomic decomposition of TRPS1 landscape reveals nearly half of H3K9me3-marked heterochromatic origins are occupied by TRPS1, where it encourages the chromatin loading of APC/C, resulting in uncontrolled origin refiring. TRPS1 binds to the genome through its atypical H3K9me3 reading via GATA and IKAROS domains, while TRPS-related mutations affect its chromatin binding, replication boosting, and tumorigenicity. Concordantly, overexpression of wild-type but not TRPS-associated mutants of TRPS1 is sufficient to drive cancer genome amplifications, which experience an extrachromosomal route and dynamically evolve to confer therapeutic resistance. Together, these results uncover a critical function of TRPS1 in driving heterochromatin origin firing and breast cancer genome evolution.
ISSN:2211-1247