Liouville-type theorem for Kirchhoff equations involving Grushin operators
Abstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\ma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-01-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13661-020-01325-4 |
id |
doaj-b64f67d100e2407d83331918eea68275 |
---|---|
record_format |
Article |
spelling |
doaj-b64f67d100e2407d83331918eea682752021-01-24T12:44:40ZengSpringerOpenBoundary Value Problems1687-27702020-01-012020111810.1186/s13661-020-01325-4Liouville-type theorem for Kirchhoff equations involving Grushin operatorsYunfeng Wei0Caisheng Chen1Hongwei Yang2School of Statistics and Mathematics, Nanjing Audit UniversityCollege of Science, Hohai UniversityCollege of Mathematics and Systems Science, Shandong University of Science and TechnologyAbstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$ and 0.2 M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) u − q , z = ( x , y ) ∈ R N = R N 1 × R N 2 , $$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$ where M ( t ) = a + b t k $M(t)=a+bt^{k}$ , t ≥ 0 $t\geq 0$ , with a > 0 $a>0$ , b , k ≥ 0 $b, k\geq 0$ , k = 0 $k=0$ if and only if b = 0 $b=0$ . q > 0 $q>0$ and ω ( z ) , f ( z ) ∈ L loc 1 ( R N ) $\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$ are nonnegative functions satisfying ω ( z ) ≤ C 1 ∥ z ∥ G θ $\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$ and f ( z ) ≥ C 2 ∥ z ∥ G d $f(z)\geq C_{2}\|z\|_{G}^{d}$ as ∥ z ∥ G ≥ R 0 $\|z\|_{G} \geq R_{0}$ with d > θ − 2 $d>\theta -2$ , R 0 $R_{0}$ , C i $C_{i}$ ( i = 1 , 2 $i=1,2$ ) are some positive constants, here α ≥ 0 $\alpha \geq 0$ and ∥ z ∥ G = ( | x | 2 ( 1 + α ) + | y | 2 ) 1 2 ( 1 + α ) $\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$ is the norm corresponding to the Grushin distance. N α = N 1 + ( 1 + α ) N 2 $N_{\alpha }=N_{1}+(1+\alpha )N_{2}$ is the homogeneous dimension of R N ${\mathbb{R}} ^{N}$ . div G $\operatorname{div}_{G}$ (resp., ∇ G $\nabla _{G}$ ) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and N α $N_{\alpha }$ , the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated.https://doi.org/10.1186/s13661-020-01325-4Kirchhoff equationsGrushin operatorStable weak solutionsLiouville-type theorem |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yunfeng Wei Caisheng Chen Hongwei Yang |
spellingShingle |
Yunfeng Wei Caisheng Chen Hongwei Yang Liouville-type theorem for Kirchhoff equations involving Grushin operators Boundary Value Problems Kirchhoff equations Grushin operator Stable weak solutions Liouville-type theorem |
author_facet |
Yunfeng Wei Caisheng Chen Hongwei Yang |
author_sort |
Yunfeng Wei |
title |
Liouville-type theorem for Kirchhoff equations involving Grushin operators |
title_short |
Liouville-type theorem for Kirchhoff equations involving Grushin operators |
title_full |
Liouville-type theorem for Kirchhoff equations involving Grushin operators |
title_fullStr |
Liouville-type theorem for Kirchhoff equations involving Grushin operators |
title_full_unstemmed |
Liouville-type theorem for Kirchhoff equations involving Grushin operators |
title_sort |
liouville-type theorem for kirchhoff equations involving grushin operators |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2020-01-01 |
description |
Abstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$ and 0.2 M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) u − q , z = ( x , y ) ∈ R N = R N 1 × R N 2 , $$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$ where M ( t ) = a + b t k $M(t)=a+bt^{k}$ , t ≥ 0 $t\geq 0$ , with a > 0 $a>0$ , b , k ≥ 0 $b, k\geq 0$ , k = 0 $k=0$ if and only if b = 0 $b=0$ . q > 0 $q>0$ and ω ( z ) , f ( z ) ∈ L loc 1 ( R N ) $\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$ are nonnegative functions satisfying ω ( z ) ≤ C 1 ∥ z ∥ G θ $\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$ and f ( z ) ≥ C 2 ∥ z ∥ G d $f(z)\geq C_{2}\|z\|_{G}^{d}$ as ∥ z ∥ G ≥ R 0 $\|z\|_{G} \geq R_{0}$ with d > θ − 2 $d>\theta -2$ , R 0 $R_{0}$ , C i $C_{i}$ ( i = 1 , 2 $i=1,2$ ) are some positive constants, here α ≥ 0 $\alpha \geq 0$ and ∥ z ∥ G = ( | x | 2 ( 1 + α ) + | y | 2 ) 1 2 ( 1 + α ) $\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$ is the norm corresponding to the Grushin distance. N α = N 1 + ( 1 + α ) N 2 $N_{\alpha }=N_{1}+(1+\alpha )N_{2}$ is the homogeneous dimension of R N ${\mathbb{R}} ^{N}$ . div G $\operatorname{div}_{G}$ (resp., ∇ G $\nabla _{G}$ ) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and N α $N_{\alpha }$ , the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated. |
topic |
Kirchhoff equations Grushin operator Stable weak solutions Liouville-type theorem |
url |
https://doi.org/10.1186/s13661-020-01325-4 |
work_keys_str_mv |
AT yunfengwei liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators AT caishengchen liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators AT hongweiyang liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators |
_version_ |
1724325492257980416 |