Liouville-type theorem for Kirchhoff equations involving Grushin operators

Abstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\ma...

Full description

Bibliographic Details
Main Authors: Yunfeng Wei, Caisheng Chen, Hongwei Yang
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-020-01325-4
id doaj-b64f67d100e2407d83331918eea68275
record_format Article
spelling doaj-b64f67d100e2407d83331918eea682752021-01-24T12:44:40ZengSpringerOpenBoundary Value Problems1687-27702020-01-012020111810.1186/s13661-020-01325-4Liouville-type theorem for Kirchhoff equations involving Grushin operatorsYunfeng Wei0Caisheng Chen1Hongwei Yang2School of Statistics and Mathematics, Nanjing Audit UniversityCollege of Science, Hohai UniversityCollege of Mathematics and Systems Science, Shandong University of Science and TechnologyAbstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$ and 0.2 M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) u − q , z = ( x , y ) ∈ R N = R N 1 × R N 2 , $$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$ where M ( t ) = a + b t k $M(t)=a+bt^{k}$ , t ≥ 0 $t\geq 0$ , with a > 0 $a>0$ , b , k ≥ 0 $b, k\geq 0$ , k = 0 $k=0$ if and only if b = 0 $b=0$ . q > 0 $q>0$ and ω ( z ) , f ( z ) ∈ L loc 1 ( R N ) $\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$ are nonnegative functions satisfying ω ( z ) ≤ C 1 ∥ z ∥ G θ $\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$ and f ( z ) ≥ C 2 ∥ z ∥ G d $f(z)\geq C_{2}\|z\|_{G}^{d}$ as ∥ z ∥ G ≥ R 0 $\|z\|_{G} \geq R_{0}$ with d > θ − 2 $d>\theta -2$ , R 0 $R_{0}$ , C i $C_{i}$ ( i = 1 , 2 $i=1,2$ ) are some positive constants, here α ≥ 0 $\alpha \geq 0$ and ∥ z ∥ G = ( | x | 2 ( 1 + α ) + | y | 2 ) 1 2 ( 1 + α ) $\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$ is the norm corresponding to the Grushin distance. N α = N 1 + ( 1 + α ) N 2 $N_{\alpha }=N_{1}+(1+\alpha )N_{2}$ is the homogeneous dimension of R N ${\mathbb{R}} ^{N}$ . div G $\operatorname{div}_{G}$ (resp., ∇ G $\nabla _{G}$ ) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and N α $N_{\alpha }$ , the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated.https://doi.org/10.1186/s13661-020-01325-4Kirchhoff equationsGrushin operatorStable weak solutionsLiouville-type theorem
collection DOAJ
language English
format Article
sources DOAJ
author Yunfeng Wei
Caisheng Chen
Hongwei Yang
spellingShingle Yunfeng Wei
Caisheng Chen
Hongwei Yang
Liouville-type theorem for Kirchhoff equations involving Grushin operators
Boundary Value Problems
Kirchhoff equations
Grushin operator
Stable weak solutions
Liouville-type theorem
author_facet Yunfeng Wei
Caisheng Chen
Hongwei Yang
author_sort Yunfeng Wei
title Liouville-type theorem for Kirchhoff equations involving Grushin operators
title_short Liouville-type theorem for Kirchhoff equations involving Grushin operators
title_full Liouville-type theorem for Kirchhoff equations involving Grushin operators
title_fullStr Liouville-type theorem for Kirchhoff equations involving Grushin operators
title_full_unstemmed Liouville-type theorem for Kirchhoff equations involving Grushin operators
title_sort liouville-type theorem for kirchhoff equations involving grushin operators
publisher SpringerOpen
series Boundary Value Problems
issn 1687-2770
publishDate 2020-01-01
description Abstract The aim of this paper is to prove the Liouville-type theorem of the following weighted Kirchhoff equations: 0.1 − M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) e u , z = ( x , y ) ∈ R N = R N 1 × R N 2 $$\begin{aligned} \begin{aligned}[b] & -M \biggl( \int _{{\mathbb{R}} ^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)e^{u}, \\ &\quad z=(x,y) \in R^{N}=R^{N_{1}}\times R^{N_{2}} \end{aligned} \end{aligned}$$ and 0.2 M ( ∫ R N ω ( z ) | ∇ G u | 2 d z ) div G ( ω ( z ) ∇ G u ) = f ( z ) u − q , z = ( x , y ) ∈ R N = R N 1 × R N 2 , $$\begin{aligned} \begin{aligned}[b] & M \biggl( \int _{\mathbb{R}^{N}}\omega (z) \vert \nabla _{G}u \vert ^{2}\,dz \biggr) \operatorname{div}_{G} \bigl(\omega (z) \nabla _{G}u \bigr)=f(z)u^{-q}, \\ &\quad z=(x,y) \in {\mathbb{R}} ^{N}={\mathbb{R}} ^{N_{1}}\times {\mathbb{R}} ^{N_{2}}, \end{aligned} \end{aligned}$$ where M ( t ) = a + b t k $M(t)=a+bt^{k}$ , t ≥ 0 $t\geq 0$ , with a > 0 $a>0$ , b , k ≥ 0 $b, k\geq 0$ , k = 0 $k=0$ if and only if b = 0 $b=0$ . q > 0 $q>0$ and ω ( z ) , f ( z ) ∈ L loc 1 ( R N ) $\omega (z), f(z)\in L^{1}_{\mathrm{loc}}({\mathbb{R}} ^{N})$ are nonnegative functions satisfying ω ( z ) ≤ C 1 ∥ z ∥ G θ $\omega (z)\leq C_{1}\|z \|_{G}^{\theta }$ and f ( z ) ≥ C 2 ∥ z ∥ G d $f(z)\geq C_{2}\|z\|_{G}^{d}$ as ∥ z ∥ G ≥ R 0 $\|z\|_{G} \geq R_{0}$ with d > θ − 2 $d>\theta -2$ , R 0 $R_{0}$ , C i $C_{i}$ ( i = 1 , 2 $i=1,2$ ) are some positive constants, here α ≥ 0 $\alpha \geq 0$ and ∥ z ∥ G = ( | x | 2 ( 1 + α ) + | y | 2 ) 1 2 ( 1 + α ) $\|z\|_{G}=(|x|^{2(1+ \alpha )}+|y|^{2})^{\frac{1}{2(1+\alpha )}}$ is the norm corresponding to the Grushin distance. N α = N 1 + ( 1 + α ) N 2 $N_{\alpha }=N_{1}+(1+\alpha )N_{2}$ is the homogeneous dimension of R N ${\mathbb{R}} ^{N}$ . div G $\operatorname{div}_{G}$ (resp., ∇ G $\nabla _{G}$ ) is Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ, d, and N α $N_{\alpha }$ , the nonexistence of stable weak solutions to equations (0.1) and (0.2) is investigated.
topic Kirchhoff equations
Grushin operator
Stable weak solutions
Liouville-type theorem
url https://doi.org/10.1186/s13661-020-01325-4
work_keys_str_mv AT yunfengwei liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators
AT caishengchen liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators
AT hongweiyang liouvilletypetheoremforkirchhoffequationsinvolvinggrushinoperators
_version_ 1724325492257980416