Magnetic and structural phase transitions of MnBi under high magnetic fields
High-field x-ray diffraction and magnetization measurements and differential thermal analysis (DTA) were carried out for polycrystalline MnBi with an NiAs-type hexagonal structure to investigate its magnetic and structural phase transitions. The lattice parameter a rapidly decreases below the spin r...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2008-01-01
|
Series: | Science and Technology of Advanced Materials |
Subjects: | |
Online Access: | http://www.iop.org/EJ/abstract/1468-6996/9/2/024204 |
Summary: | High-field x-ray diffraction and magnetization measurements and differential thermal analysis (DTA) were carried out for polycrystalline MnBi with an NiAs-type hexagonal structure to investigate its magnetic and structural phase transitions. The lattice parameter a rapidly decreases below the spin reorientation temperature TSR(=90 K) in a zero magnetic field. The parameter c decreases gradually with decreasing temperature and exhibits an anomaly in the vicinity of TSR. By applying a magnetic field of 5 T, the parameter a increases by ~0.05% when T<TSR and varies smoothly when 8≤T≤300 K. DTA data show that the magnetic phase transition temperature from the ferromagnetic state to the paramagnetic state increases linearly at a rate of 2 KT−1 with increasing magnetic field up to 14 T. |
---|---|
ISSN: | 1468-6996 1878-5514 |