Synthesizing Zno Nanoparticles by High-Energy Milling and Investigating Their Antimicrobial Effect
Introduction: Biologists have increasingly used zinc oxide (ZnO) nanoparticles in regard with biological applications. The present study aimed to assess feasibility of ZnO nanoparticles synthesis by high-energy milling as well as to investigate their antimicrobial effect. Methods: The high-energy b...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | fas |
Published: |
Shahid Sadoughi University of Medical Sciences
2015-07-01
|
Series: | Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd |
Subjects: | |
Online Access: | http://jssu.ssu.ac.ir/browse.php?a_code=A-10-1931-1&slc_lang=en&sid=1 |
Summary: | Introduction: Biologists have increasingly used zinc oxide (ZnO) nanoparticles in regard with biological applications. The present study aimed to assess feasibility of ZnO nanoparticles synthesis by high-energy milling as well as to investigate their antimicrobial effect.
Methods: The high-energy ball milling technique was used to produce ZnO nanoparticles from micron-scale ZnO particles. The phase state, morphology, and size of the ZnO nanoparticles were characterized by different methods of particle size analyzer (PSA), X-ray diffraction (XRD), UV-Vis spectroscopy and transmission electron microscopy (TEM). Furthermore, the antibacterial effect of ZnO nanoparticles was examined on E. coli and S. aureus bacteria.
Results: The study results demonstrated that size of the synthesized nanoparticles was within the range of 20 -90 nm and their morphology was reported as nanorod and nanoparticles with multifaceted cross-section. An increase in the density of nanoparticles resulted in a rise in the antimicrobial effect. Moreover, Staphylococcus aureus bacteria inhibition zone was 3±0.5 and 7±0.5 mm respectively at the density of 6 and 10 mM. The MIC and MBC of ZnO nanoparticles provided for Staphylococcus aureus were observed 3±3 and 2.5±0 mg/ml, whereas they were reported 7.5±0 and 8±0 mg/ml for Escherichia coli bacteria.
Conclusion: The findings of the present study revealed that ZnO nanomaterials could be synthesized by applying high-energy milling on micron-scaled ZnO particles. In addition, they can be utilized in food packaging and preservation process. |
---|---|
ISSN: | 2228-5741 2228-5733 |