Eigenvalues of an Operator Homogeneous at the Infinity
In this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case N = 1. Finally we study thesolvability of the problemA(u) := −div(A(x,∇u)) = f(x, u) + h in...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2010-07-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/10815/5837 |
id |
doaj-b610d54d3ac14ae7bf99ab1a4230b7d7 |
---|---|
record_format |
Article |
spelling |
doaj-b610d54d3ac14ae7bf99ab1a4230b7d72020-11-25T01:35:15ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882010-07-012815165Eigenvalues of an Operator Homogeneous at the InfinityMohammed FilaliBelhadj KarimOmar ChakroneAomar AnaneIn this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case N = 1. Finally we study thesolvability of the problemA(u) := −div(A(x,∇u)) = f(x, u) + h in Ω,u = 0 on ∂Ω,as well as the spectrum ofG_0'(u) = λm|u|^{p−2}u in Ω,u = 0 on ∂Ω.http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/10815/5837Operator homogeneous at infinityEigenvaluesBoundary Value problem. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammed Filali Belhadj Karim Omar Chakrone Aomar Anane |
spellingShingle |
Mohammed Filali Belhadj Karim Omar Chakrone Aomar Anane Eigenvalues of an Operator Homogeneous at the Infinity Boletim da Sociedade Paranaense de Matemática Operator homogeneous at infinity Eigenvalues Boundary Value problem. |
author_facet |
Mohammed Filali Belhadj Karim Omar Chakrone Aomar Anane |
author_sort |
Mohammed Filali |
title |
Eigenvalues of an Operator Homogeneous at the Infinity |
title_short |
Eigenvalues of an Operator Homogeneous at the Infinity |
title_full |
Eigenvalues of an Operator Homogeneous at the Infinity |
title_fullStr |
Eigenvalues of an Operator Homogeneous at the Infinity |
title_full_unstemmed |
Eigenvalues of an Operator Homogeneous at the Infinity |
title_sort |
eigenvalues of an operator homogeneous at the infinity |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2010-07-01 |
description |
In this paper, we show the existence of a sequences of eigenvalues for an operator homogenous at the infinity, we give his variational formulation and we establish the simplicity of all eigenvalues in the case N = 1. Finally we study thesolvability of the problemA(u) := −div(A(x,∇u)) = f(x, u) + h in Ω,u = 0 on ∂Ω,as well as the spectrum ofG_0'(u) = λm|u|^{p−2}u in Ω,u = 0 on ∂Ω. |
topic |
Operator homogeneous at infinity Eigenvalues Boundary Value problem. |
url |
http://www.periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/10815/5837 |
work_keys_str_mv |
AT mohammedfilali eigenvaluesofanoperatorhomogeneousattheinfinity AT belhadjkarim eigenvaluesofanoperatorhomogeneousattheinfinity AT omarchakrone eigenvaluesofanoperatorhomogeneousattheinfinity AT aomaranane eigenvaluesofanoperatorhomogeneousattheinfinity |
_version_ |
1725067523850764288 |