Breeding unicorns: Developing trustworthy and scalable randomness beacons.

Randomness beacons are services that periodically emit a random number, allowing users to base decisions on the same random value without trusting anyone: ideally, the randomness beacon does not only produce unpredictable values, but is also of low computational complexity for the users, bias-resist...

Full description

Bibliographic Details
Main Authors: Samvid Dharanikota, Michael Toft Jensen, Sebastian Rom Kristensen, Mathias Sass Michno, Yvonne-Anne Pignolet, René Rydhof Hansen, Stefan Schmid
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0232261
Description
Summary:Randomness beacons are services that periodically emit a random number, allowing users to base decisions on the same random value without trusting anyone: ideally, the randomness beacon does not only produce unpredictable values, but is also of low computational complexity for the users, bias-resistant and publicly verifiable. Such randomness beacons can serve as an important primitive for smart contracts in a variety of contexts. This paper first presents a structured security analysis, based on which we then design, implement, and evaluate a trustworthy and efficient randomness beacon. Our approach does not require users to register or run any computationally intensive operations. We then compare different implementation and deployment options on distributed ledgers, and report on an Ethereum smart contract-based lottery using our beacon.
ISSN:1932-6203