Nothing really matters
Abstract We study non-perturbative instabilities of AdS spacetime in General Relativity with a cosmological constant in arbitrary dimensions. In this simple setup we explicitly construct a class of gravitational instantons generalizing Witten’s bubble of nothing. We calculate the corresponding Eucli...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP08(2020)040 |
Summary: | Abstract We study non-perturbative instabilities of AdS spacetime in General Relativity with a cosmological constant in arbitrary dimensions. In this simple setup we explicitly construct a class of gravitational instantons generalizing Witten’s bubble of nothing. We calculate the corresponding Euclidean action and show that its change is finite. The expansion of these bubbles is described by a lower-dimensional de Sitter geometry within a non- compact foliation of the background spacetime. Moreover we discuss the existence of covariantly constant spinors as a possible topological obstruction for such decays to occur. This mechanism is further connected to the stability of supersymmetric vacua in string theory. |
---|---|
ISSN: | 1029-8479 |